Mostrar el registro sencillo

dc.contributor.authorGonzález Gutierrez, Pablo
dc.contributor.authorCicero González, Sergio 
dc.contributor.authorPeron, M.
dc.contributor.authorArroyo Martínez, Borja 
dc.contributor.authorÁlvarez Laso, José Alberto 
dc.contributor.authorBerto, F.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-08T08:59:45Z
dc.date.available2021-02-08T08:59:45Z
dc.date.issued2020
dc.identifier.issn2452-3216
dc.identifier.urihttp://hdl.handle.net/10902/20645
dc.description.abstractABSTRACT: The complex interaction between physiological stresses and corrosive human fluids can lead to the premature failure of metallic biomaterials due to the development of Environmental Assisted Cracking (EAC) processes. In this paper, the EAC phenomenon is analysed through a Theory of Critical Distances based methodology, which has been validated in other materials and aggressive environments, and the apparent crack propagation threshold in notched conditions is estimated. Notch-like defects, which are frequently found in aggressive environments, may present higher values of crack propagation thresholds than those exhibited in cracked components. The knowledge of this higher material performance makes it possible to address the problem avoiding oversizing or unnecessary replacements in biomaterials, which leads to an improvement in the quality of life of the people carrying these materials. In this study, the susceptibility of AZ31 magnesium alloy to EAC and the evolution of the apparent crack propagation threshold have been analysed. The aggressive environment used was Simulated Body Fluid (SBF). The main conclusion is that the Theory of Critical Distances predicts the behaviour of this biomaterial in notched conditions and subjected to the aggressive environment being studied.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevier B.V.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceProcedia Structural Integrity Volume 28, 2020, Pages 45-52es_ES
dc.subject.otherTheory of Critical Distanceses_ES
dc.subject.otherEnvironmental Assisted Crackinges_ES
dc.subject.otherBiomaterialses_ES
dc.subject.otherMagnesioum alloyes_ES
dc.titleApplication of the Theory of the Critical Distances based methodology for the analysis of Environmentally Assisted Cracking processes in biomaterialses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.prostr.2020.11.130es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.prostr.2020.11.130
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International