Mostrar el registro sencillo

dc.contributor.advisorVilar Cortabitarte, Rocío 
dc.contributor.advisorCalderón Tazón, Alicia 
dc.contributor.authorLizoain Cotanda, Aritz
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-04T17:26:16Z
dc.date.available2021-02-04T17:26:16Z
dc.date.issued2020-09
dc.identifier.urihttp://hdl.handle.net/10902/20627
dc.description.abstractABSTRACT: The Standard Model of particle physics, while being able to make accurate predictions, has been proved to fail to explain various phenomena, such as astronomical dark matter observations. In this work, a machine learning application has been implemented with the goal of studying dark matter candidates. Images from Charge Coupled Devices (CCDs) in different experiments DAMIC/DAMIC-M located underground will be used to test different deep learning algorithms. A U-Net model has been trained with Python’s open-source library Keras. The model performs multi-class image segmentation in order to detect dark matter particle signals among background noise.es_ES
dc.format.extent57es_ES
dc.language.isoenges_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.otherMachine learninges_ES
dc.subject.otherCNNes_ES
dc.subject.otherImage segmentationes_ES
dc.subject.otherPythones_ES
dc.subject.otherDAMIC-Mes_ES
dc.titleApplication of machine learning techniques to images collected with Charge Coupled Devices to search for Dark Matteres_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.rights.accessRightsopenAccesses_ES
dc.description.degreeGrado en Físicaes_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Atribución-NoComercial-SinDerivadas 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España