Mostrar el registro sencillo

dc.contributor.authorAja Abelán, Beatriz 
dc.contributor.authorFuente Rodríguez, Luisa María de la 
dc.contributor.authorFernández Pérez, África María
dc.contributor.authorPascual Gutiérrez, Juan Pablo 
dc.contributor.authorArtal Latorre, Eduardo 
dc.contributor.authorCalero de Ory, Marina
dc.contributor.authorMagaz Pérez, María Teresa
dc.contributor.authorGranados Ruiz, Daniel
dc.contributor.authorMartin Pintado, Jesús
dc.contributor.authorGómez Gutiérrez, Alicia
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-02T13:49:13Z
dc.date.available2021-02-02T13:49:13Z
dc.date.issued2020
dc.identifier.isbn978-1-7281-6816-6
dc.identifier.otherESP2017-83921-C2-2-Res_ES
dc.identifier.otherESP2017-86582-C4-1-Res_ES
dc.identifier.otherESP2017-86582-C4-3-Res_ES
dc.identifier.otherMAT2017-85617-Res_ES
dc.identifier.otherESP2017-92706-EXPes_ES
dc.identifier.otherAYA2017-92153- EXPes_ES
dc.identifier.urihttp://hdl.handle.net/10902/20611
dc.description.abstractAn array of superconducting kinetic inductance detectors (KID) has been fabricated and it has demonstrated absorption at W-Band. The use of a bi-layer structure based on aluminum (AI) and titanium (Ti) shows a lower superconducting critical temperature (T c ), which allows the detection at W-band. A design methodology is presented taking into account the KID geometry in order to maximize the absorption and a dual-polarization KID has been designed using the proposed methodology. Two prototypes of KID on Silicon substrate have been fabricated showing a good agreement between measurement and simulation results. The measurements at room temperature from 65 to 110 GHz show the matching at the frequency band, while dark cryogenic characterization demonstrated the low frequency design.es_ES
dc.description.sponsorshipThe authors acknowledge financial supports: Ministry of Science, Innovation and Universities Grants ESP2017-83921-C2-2-R, ESP2017-86582-C4-1-R, ESP2017-86582-C4-3-R, MAT2017-85617-R, ESP2017-92706-EXP, AYA2017-92153-EXP and from Comunidad de Madrid through Grant P2018/NMT-4291 TEC2-SPACE-CM. A.G. acknowledges IJCI-2017-33991; IMDEA Nanociencia acknowledges support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686). D.G. and A.G also acknowledge Grant DEFROST N62909-19-1-2053 from ONR-Global.es_ES
dc.format.extent4 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, California, USA, 2020, 932-935es_ES
dc.subject.otherKinetic inductance detectores_ES
dc.subject.otherSuperconducting microwave deviceses_ES
dc.subject.otherResonatores_ES
dc.subject.otherCryogenicses_ES
dc.titleBi-layer kinetic inductance detectors for W-bandes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/IMS30576.2020.9223828es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/IMS30576.2020.9223828
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo