Mostrar el registro sencillo

dc.contributor.authorRamírez García, David
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorScharf, Louis L. 
dc.contributor.authorVaerenbergh, Steven van 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-02T10:19:39Z
dc.date.available2021-02-02T10:19:39Z
dc.date.issued2020
dc.identifier.issn1053-587X
dc.identifier.issn1941-0476
dc.identifier.otherTEC2017-92552-EXPes_ES
dc.identifier.otherTEC2017-86921- C2-2-Res_ES
dc.identifier.otherTEC2016-75067-C4-4-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20607
dc.description.abstractThis work presents a generalization of classical factor analysis (FA). Each of M channels carries measurements that share factors with all other channels, but also contains factors that are unique to the channel. Furthermore, each channel carries an additive noise whose covariance is diagonal, as is usual in factor analysis, but is otherwise unknown. This leads to a problem of multi-channel factor analysis with a specially structured covariance model consisting of shared low-rank components, unique low-rank components, and diagonal components. Under a multivariate normal model for the factors and the noises, a maximum likelihood (ML) method is presented for identifying the covariance model, thereby recovering the loading matrices and factors for the shared and unique components in each of the M multiple-input multipleoutput (MIMO) channels. The method consists of a three-step cyclic alternating optimization, which can be framed as a block minorization-maximization (BMM) algorithm. Interestingly, the three steps have closed-form solutions and the convergence of the algorithm to a stationary point is ensured. Numerical results demonstrate the performance of the proposed algorithm and its application to passive radar.es_ES
dc.description.sponsorshipThe work of D. Ramírez was supported in part by the Ministerio de Ciencia, Innovación y Universidades under Grant TEC2017-92552-EXP (aMBITION), in part by the Ministerio de Ciencia, Innovación y Universidades, jointly with the European Commission (ERDF), under Grant TEC2017-86921-C2-2-R (CAIMAN), and in part by The Comunidad de Madrid under Grant Y2018/TCS-4705 (PRACTICO-CM). The work of I. Santamaria and S. Van Vaerenbergh was supported by Ministerio de Ciencia, Innovación y Universidades and AEI/FEDER funds of the E.U. under Grant TEC2016-75067-C4-4-R (CARMEN). The work of L. L. Scharf was supported by National Science Foundation under Grant CCF-1712788.es_ES
dc.format.extent14 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Transactions on Signal Processing, 2020, 68, 113-126es_ES
dc.subject.otherBlock minorization-maximization (BMM) algorithmses_ES
dc.subject.otherExpectation-maximization (EM) algorithmses_ES
dc.subject.otherMaximum likelihood (ML) estimationes_ES
dc.subject.otherMulti-channel factor analysis (MFA)es_ES
dc.subject.otherMultiple-input multiple-output (MIMO) channelses_ES
dc.subject.otherPassive radares_ES
dc.titleMulti-channel factor analysis with common and unique factorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/TSP.2019.2955829es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/TSP.2019.2955829
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo