• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-channel factor analysis with common and unique factors

    Ver/Abrir
    MultiChannelFactorAn ... (2.490Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/20607
    DOI: 10.1109/TSP.2019.2955829
    ISSN: 1053-587X
    ISSN: 1941-0476
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Ramírez García, David; Santamaría Caballero, Luis IgnacioAutoridad Unican; Scharf, Louis L.Autoridad Unican; Vaerenbergh, Steven vanAutoridad Unican
    Fecha
    2020
    Derechos
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE Transactions on Signal Processing, 2020, 68, 113-126
    Editorial
    Institute of Electrical and Electronics Engineers, Inc.
    Enlace a la publicación
    https://doi.org/10.1109/TSP.2019.2955829
    Palabras clave
    Block minorization-maximization (BMM) algorithms
    Expectation-maximization (EM) algorithms
    Maximum likelihood (ML) estimation
    Multi-channel factor analysis (MFA)
    Multiple-input multiple-output (MIMO) channels
    Passive radar
    Resumen/Abstract
    This work presents a generalization of classical factor analysis (FA). Each of M channels carries measurements that share factors with all other channels, but also contains factors that are unique to the channel. Furthermore, each channel carries an additive noise whose covariance is diagonal, as is usual in factor analysis, but is otherwise unknown. This leads to a problem of multi-channel factor analysis with a specially structured covariance model consisting of shared low-rank components, unique low-rank components, and diagonal components. Under a multivariate normal model for the factors and the noises, a maximum likelihood (ML) method is presented for identifying the covariance model, thereby recovering the loading matrices and factors for the shared and unique components in each of the M multiple-input multipleoutput (MIMO) channels. The method consists of a three-step cyclic alternating optimization, which can be framed as a block minorization-maximization (BMM) algorithm. Interestingly, the three steps have closed-form solutions and the convergence of the algorithm to a stationary point is ensured. Numerical results demonstrate the performance of the proposed algorithm and its application to passive radar.
    Colecciones a las que pertenece
    • D12 Artículos [360]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España