Mostrar el registro sencillo

dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.authorScharf, Louis L. 
dc.contributor.authorRamírez García, David
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-02-02T10:15:30Z
dc.date.available2021-02-02T10:15:30Z
dc.date.issued2020
dc.identifier.issn1053-587X
dc.identifier.issn1941-0476
dc.identifier.otherTEC2016-75067-C4-4-Res_ES
dc.identifier.otherPID2019-104958RB-C43es_ES
dc.identifier.otherTEC2017-92552-EXPes_ES
dc.identifier.otherTEC2017-86921-C2-2-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20606
dc.description.abstractThe problem is to detect a multi-dimensional source transmitting an unknown sequence of complex-valued symbols to a multi-sensor array. In some cases the channel subspace is known, and in others only its dimension is known. Should the unknown transmissions be treated as unknowns in a first-order statistical model, or should they be assigned a prior distribution that is then used to marginalize a first-order model for a second-order statistical model? This question motivates the derivation of subspace detectors for cases where the subspace is known, and for cases where only the dimension of the subspace is known. For three of these four models the GLR detectors are known, and they have been reported in the literature. But the GLR detector for the case of a known subspace and a second-order model for the measurements is derived for the first time in this paper. When the subspace is known, second-order generalized likelihood ratio (GLR) tests outperform first-order GLR tests when the spread of subspace eigenvalues is large, while first-order GLR tests outperform second-order GLR tests when the spread is small. When only the dimension of the subspace is known, second-order GLR tests outperform first-order GLR tests, regardless of the spread of signal subspace eigenvalues. For a dimension-1 source, first-order and second-order statistical models lead to equivalent GLR tests. This is a new finding.es_ES
dc.description.sponsorshipThe work by I. Santamaria was supported by the Ministerio de Ciencia e Innovación of Spain, and AEI/FEDER funds of the E.U., under Grants TEC2016-75067-C4-4-R (CARMEN) and PID2019-104958RB-C43 (ADELE). The work by Louis Scharf is supported by the Air Force Office of Scientific Research under contract FA9550-18-1-0087, and by the National Science Foundation (NSF) under contract CCF-1712788. The work of David Ramírez was supported by the Ministerio de Ciencia, Innovación y Universidades under grant TEC2017-92552-EXP (aMBITION), by the Ministerio de Ciencia, Innovación y Universidades, jointly with the European Commission (ERDF), under Grant TEC2017-86921-C2-2-R (CAIMAN), and by The Comunidad de Madrid under grant Y2018/TCS-4705 (PRACTICO-CM).es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.es_ES
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE Transactions on Signal Processing, 2020, 68, 6432-6443es_ES
dc.subject.otherDetectiones_ES
dc.subject.otherGeneralized likelihood ratio (GLR)es_ES
dc.subject.otherLikelihoodes_ES
dc.subject.otherMulti-sensor arrayes_ES
dc.subject.otherMultivariate normal model (MVN)es_ES
dc.subject.otherScale-invariant detectores_ES
dc.subject.otherSubspace signalses_ES
dc.titleScale-invariant subspace detectors based on first- and second-order statistical modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/TSP.2020.3036725es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/TSP.2020.3036725
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo