Mostrar el registro sencillo

dc.contributor.authorMartín Jefremovas, Elizabeth 
dc.contributor.authorFuente Rodríguez, María de la 
dc.contributor.authorAlonso Masa, Javier 
dc.contributor.authorRodríguez Fernández, Jesús 
dc.contributor.authorEspeso Martínez, José Ignacio 
dc.contributor.authorPuente-Orench, Inés
dc.contributor.authorRojas, Daniel P.
dc.contributor.authorGracía-Prieto, Ana
dc.contributor.authorFernández-Gubieda, María Luisa
dc.contributor.authorRodríguez-Fernández, Lidia
dc.contributor.authorFernández Barquín, Luis 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-01-26T16:14:42Z
dc.date.available2021-01-26T16:14:42Z
dc.date.issued2020-10-28
dc.identifier.issn2079-4991
dc.identifier.otherMAT2017-83631-C3-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20566
dc.description.abstractRecently, potential technological interest has been revealed for the production of magnetocaloric alloys using Rare-Earth intermetallics. In this work, three series of TbxR1_xCu2 (R Gd, La, Y) alloys have been produced in bulk and nanoparticle sizes via arc melting and high energy ball milling. Rietveld refinements of the X-ray and Neutron diffraction patterns indicate that the crystalline structure in all alloys is consistent with TbCu2 orthorhombic Imma bulk crystalline structure. The analyses of the DC-magnetisation (MDC) and AC-susceptibility (cAC) show that three distinct degrees of disorder have been achieved by the combination of both the Tb3+replacement (dilution) and the nanoscaling. These disordered states are characterised by transitions which are evident to MDC, cAC and specific heat. There exists an evolution from the most ordered Superantiferromagnetic arrangement of the Tb0.5La0.5Cu2 NPs with Néel temperature, TN 27 K, and freezing temperature, Tf 7 K, to the less ordered weakly interacting Superparamagnetism of the Tb0.1Y0.9Cu2 nanoparticles (TN absent, and TB 3 K). The Super Spin Glass Tb0.5Gd0.5Cu2 nanoparticles (TN absent, and Tf 20 K) are considered an intermediate disposition in between those two extremes, according to their enhanced random-bond contribution to frustration.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish MAT2017-83631-C3-R grant. E.M.J.’s work was supported by “Beca de Colaboración”, BDNS: 311327 granted by Ministerio de Educación, Cultura y Deporte and “Beca Concepción Arenal” BDNS: 406333 granted by the Gobierno de Cantabria and the Universidad de Cantabria. MRF work was supported by FPI (BES-2012-058722).es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNanomaterials 2020, 10, 2148es_ES
dc.subject.otherMagnetic nanoparticleses_ES
dc.subject.otherNanomagnetismes_ES
dc.subject.otherMagnetic couplinges_ES
dc.subject.otherNeutron diffractiones_ES
dc.subject.otherSpin Glasses_ES
dc.titleExploring the Different Degrees of Magnetic Disorder in TbxR1_xCu2 Nanoparticle Alloyses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/nano10112148
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.