Mostrar el registro sencillo

dc.contributor.authorMartín Jefremovas, Elizabeth 
dc.contributor.authorAlonso Masa, Javier 
dc.contributor.authorFuente Rodríguez, María de la 
dc.contributor.authorRodríguez Fernández, Jesús 
dc.contributor.authorEspeso Martínez, José Ignacio 
dc.contributor.authorRojas Pupo, Daniel 
dc.contributor.authorGarcía Prieto, Ana
dc.contributor.authorFernández-Gubieda Ruiz, María Luisa
dc.contributor.authorFernández Barquín, Luis 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-01-26T15:59:50Z
dc.date.available2021-01-26T15:59:50Z
dc.date.issued2020-06
dc.identifier.issn2079-4991
dc.identifier.otherMAT2017-83631-C3-R.es_ES
dc.identifier.urihttp://hdl.handle.net/10902/20562
dc.description.abstractA series of GdCu 22 nanoparticles with controlled sizes ranging from 7 nm to 40 nm has been produced via high-energy inert-gas ball milling. Rietveld refinements on the X-ray diffraction measurements ensure that the bulk crystalline ImmaImma structure is retained within the nanoparticles, thanks to the employed low milling times ranging from t = 0.5 to t = 5 h. The analysis of the magnetic measurements shows a crossover from Superantiferromagnetism (SAF) to a Super Spin Glass state as the size decreases at NP size of ?D???D?? 18 nm. The microstrain contribution, which is always kept below 1%, together with the increasing surface-to-core ratio of the magnetic moments, trigger the magnetic disorder. Additionally, an extra contribution to the magnetic disorder is revealed within the SAF state, as the oscillating RKKY indirect exchange achieves to couple with the aforementioned contribution that emerges from the size reduction. The combination of both sources of disorder leads to a maximised frustration for ?D???D?? 25 nm sized NPs.es_ES
dc.description.sponsorshipThis work has been supported by MAT2017-83631-C3-R. EMJ thanks the “Beca Concepción Arenal” BDNS: 406333 granted by the Gobierno de Cantabria and the Universidad de Cantabriaes_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNanomaterials 2020, 10(6), 1117es_ES
dc.subject.otherMagnetic nanoparticleses_ES
dc.subject.otherRare earth intermetallicses_ES
dc.subject.otherMagnetic couplinges_ES
dc.subject.otherX-ray diffractiones_ES
dc.subject.otherSpin Glasses_ES
dc.titleInvestigating the Size and Microstrain Influence in the Magnetic Order/Disorder State of GdCu2 Nanoparticleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/nano10061117es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/nano10061117
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.