Mostrar el registro sencillo

dc.contributor.authorDas, Raja
dc.contributor.authorWitanachchi, Chiran
dc.contributor.authorNemati, Zohreh
dc.contributor.authorKalappattil, Vijaysankar
dc.contributor.authorRodrigo, Irati
dc.contributor.authorGarcía, José Ángel
dc.contributor.authorGaraio, Eneko
dc.contributor.authorAlonso Masa, Javier 
dc.contributor.authorLam, Vu Dinh
dc.contributor.authorLe, Anh-Tuan
dc.contributor.authorPhan, Manh-Huong
dc.contributor.authorSrikanth, Hariharan
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-01-26T15:31:11Z
dc.date.available2021-01-26T15:31:11Z
dc.date.issued2020-02
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/10902/20559
dc.description.abstractSingle-crystal iron oxide nanorings have been proposed as a promising candidate for magnetic hyperthermia application because of their unique shape-induced vortex-domain structure, which supports good colloidal stability and enhanced magnetic properties. However, the synthesis of single crystalline iron oxide has proven to be challenging. In this article, we showed that chemically synthesized multigrain magnetite nanorings disfavor a shape-induced magnetic vortex-domain structure. Our results indicate that the multigrain Fe3O4 nanorings with an average outer diameter of ~110 nm and an inner to outer diameter ratio of ~0.5 do not show a shape-induced vortex-domain structure, which was observed in the single-crystal Fe3O4 nanorings of similar dimensions. At 300 Ks, multigrain magnetite nanorings showed an effective anisotropy field of 440 Oe, which can be attributed to its high surface area and intraparticle interaction. Both calorimetric and AC loop measurements showed a moderate inductive heating efficiency of multigrain magnetite nanorings of ~300 W/g at 800 Oe. Our results shed light on the magnetic ground states of chemically synthesized multigrain Fe3O4 nanorings.es_ES
dc.format.extent11 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceAppl. Sci. 2020, 10(3), 787es_ES
dc.subject.otherMultigraines_ES
dc.subject.otherNanoringses_ES
dc.subject.otherMagnetic vortex-domaines_ES
dc.subject.otherHyperthermiaes_ES
dc.titleMagnetic Vortex and Hyperthermia Suppression in Multigrain Iron Oxide Nanoringses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3390/app10030787es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/app10030787
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.