Mostrar el registro sencillo

dc.contributor.authorLange, Sebastian
dc.contributor.authorEngleitner, Thomas
dc.contributor.authorMueller, Sebastian
dc.contributor.authorMaresch, Roman
dc.contributor.authorZwiebel, Maximilian
dc.contributor.authorGonzález Silva, Laura
dc.contributor.authorSchneider, Günter
dc.contributor.authorBanerjee, Ruby
dc.contributor.authorYang, Fengtang
dc.contributor.authorVassiliou, George S.
dc.contributor.authorFriedrich, Mathias J.
dc.contributor.authorSaur, Dieter
dc.contributor.authorVarela Egocheaga, Ignacio 
dc.contributor.authorRad, Roland
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-01-26T11:04:25Z
dc.date.available2021-01-26T11:04:25Z
dc.date.issued2020-02
dc.identifier.issn1754-2189
dc.identifier.issn1750-2799
dc.identifier.otherSAF2016-76758-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/20552
dc.description.abstractMouse models of human cancer have transformed our ability to link genetics, molecular mechanisms and phenotypes. Both reverse and forward genetics in mice are currently gaining momentum through advances in next-generation sequencing (NGS). Methodologies to analyze sequencing data were, however, developed for humans and hence do not account for species-specific differences in genome structures and experimental setups. Here, we describe standardized computational pipelines specifically tailored to the analysis of mouse genomic data. We present novel tools and workflows for the detection of different alteration types, including single-nucleotide variants (SNVs), small insertions and deletions (indels), copy-number variations (CNVs), loss of heterozygosity (LOH) and complex rearrangements, such as in chromothripsis. Workflows have been extensively validated and cross-compared using multiple methodologies. We also give step-by-step guidance on the execution of individual analysis types, provide advice on data interpretation and make the complete code available online. The protocol takes 2?7 d, depending on the desired analyses.es_ES
dc.description.sponsorshipD.S. is supported by the European Research Council (Consolidator Grant 648521) and the Deutsche Forschungsgemeinschaft (SA1374/4-2; SFB 1321). I.V. is supported by the European Research Council (Starting Grant INTRAHETEROSEQ) and the Spanish Goverment (SAF2016-76758-R). R.R. is supported by the European Research Council (Consolidator Grants PACA-MET and MSCA-ITN-ETN PRECODE), the Deutsche Forschungsgemeinschaft (DFG RA1629/2-1; SFB1243; SFB1321; SFB1335), the German Cancer Consortium Joint Funding Program, and the Deutsche Krebshilfe (70112480).es_ES
dc.format.extent50 p.es_ES
dc.language.isoenges_ES
dc.publisherNature Pub. Groupes_ES
dc.rights©The authors © Nature Researches_ES
dc.sourceNat Protoc . 2020 Feb;15(2):266-315.es_ES
dc.titleAnalysis pipelines for cancer genome sequencing in micees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1038/s41596-019-0234-7es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1038/s41596-019-0234-7
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo