dc.contributor.author | Lange, Sebastian | |
dc.contributor.author | Engleitner, Thomas | |
dc.contributor.author | Mueller, Sebastian | |
dc.contributor.author | Maresch, Roman | |
dc.contributor.author | Zwiebel, Maximilian | |
dc.contributor.author | González Silva, Laura | |
dc.contributor.author | Schneider, Günter | |
dc.contributor.author | Banerjee, Ruby | |
dc.contributor.author | Yang, Fengtang | |
dc.contributor.author | Vassiliou, George S. | |
dc.contributor.author | Friedrich, Mathias J. | |
dc.contributor.author | Saur, Dieter | |
dc.contributor.author | Varela Egocheaga, Ignacio | |
dc.contributor.author | Rad, Roland | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2021-01-26T11:04:25Z | |
dc.date.available | 2021-01-26T11:04:25Z | |
dc.date.issued | 2020-02 | |
dc.identifier.issn | 1754-2189 | |
dc.identifier.issn | 1750-2799 | |
dc.identifier.other | SAF2016-76758-R | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/20552 | |
dc.description.abstract | Mouse models of human cancer have transformed our ability to link genetics, molecular mechanisms and phenotypes. Both reverse and forward genetics in mice are currently gaining momentum through advances in next-generation sequencing (NGS). Methodologies to analyze sequencing data were, however, developed for humans and hence do not account for species-specific differences in genome structures and experimental setups. Here, we describe standardized computational pipelines specifically tailored to the analysis of mouse genomic data. We present novel tools and workflows for the detection of different alteration types, including single-nucleotide variants (SNVs), small insertions and deletions (indels), copy-number variations (CNVs), loss of heterozygosity (LOH) and complex rearrangements, such as in chromothripsis. Workflows have been extensively validated and cross-compared using multiple methodologies. We also give step-by-step guidance on the execution of individual analysis types, provide advice on data interpretation and make the complete code available online. The protocol takes 2?7 d, depending on the desired analyses. | es_ES |
dc.description.sponsorship | D.S. is supported by the European Research Council (Consolidator Grant 648521) and the Deutsche Forschungsgemeinschaft (SA1374/4-2; SFB 1321). I.V. is supported by the European Research Council (Starting Grant INTRAHETEROSEQ) and the Spanish Goverment (SAF2016-76758-R). R.R. is supported by the European Research Council (Consolidator Grants PACA-MET and MSCA-ITN-ETN PRECODE), the Deutsche Forschungsgemeinschaft (DFG RA1629/2-1; SFB1243; SFB1321; SFB1335), the German Cancer Consortium Joint Funding Program, and the Deutsche Krebshilfe (70112480). | es_ES |
dc.format.extent | 50 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Nature Pub. Group | es_ES |
dc.rights | ©The authors © Nature Research | es_ES |
dc.source | Nat Protoc
. 2020 Feb;15(2):266-315. | es_ES |
dc.title | Analysis pipelines for cancer genome sequencing in mice | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1038/s41596-019-0234-7 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1038/s41596-019-0234-7 | |
dc.type.version | acceptedVersion | es_ES |