Mostrar el registro sencillo

dc.contributor.authorLaguillo Revuelta, Saúl
dc.contributor.authorOchoa Torres, José Salvador
dc.contributor.authorTizné Larroy, Eduardo
dc.contributor.authorPina Artal, Antonio
dc.contributor.authorBallester Castañer, Javier
dc.contributor.authorOrtiz Sainz de Aja, Alfredo 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-01-25T18:43:41Z
dc.date.available2023-04-30T00:00:54Z
dc.date.issued2021-04
dc.identifier.issn1875-5100
dc.identifier.issn2212-3865
dc.identifier.urihttp://hdl.handle.net/10902/20539
dc.description.abstractThe increase of thermal efficiency compatible with low carbon monoxide (CO) emissions is a challenging and permanent target in the design of any burning technology such as domestic gas cooking burners. The main goal of this work is to provide a deeper insight into the CO formation and its relationship with the flame structure when natural gas (NG) is burnt in these devices. Given their geometrical complexity, a simpler configuration is employed to carry out new experimental tests assuming similar operating conditions. Then, numerical modeling is validated and subsequently used to deeply analyze the flame-wall interaction phenomena. The simplified burner consists of an axisymmetric, partially premixed methane flame impinging perpendicularly onto the bottom wall of a water pot. The influence of burner-to-pot distance, flame thermal power, primary aeration and inside-pot water temperature on CO emissions and thermal efficiency is evaluated. A decrease in CO emissions is observed as primary aeration or wall temperature increases. Nevertheless, non-monotonic trends appear for changes in burner-to-pot distance or flame thermal power. The trends are numerically well captured selecting the detailed GRI-Mech 3.0 chemistry mechanism. The analysis of the computational results reveals that CO emissions and thermal efficiency are strongly related to the relative boundary position of the inner premixed flame cone and the wall. The growth of the distinct zones of the flame where CO chemically reacts with primary and secondary air is constrained by the presence of the pot wall. This fact drives the final CO concentration, and incidentally the thermal efficiency, leading to a factual criterion for the design of NG burners.es_ES
dc.format.extent40 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Natural Gas Science and Engineering, 2021, 88, 103771es_ES
dc.subject.otherMethanees_ES
dc.subject.otherFlame-wall interactiones_ES
dc.subject.otherCarbon monoxidees_ES
dc.subject.otherSingle flame burneres_ES
dc.subject.otherPartially premixed flamees_ES
dc.subject.otherInner premixed flame conees_ES
dc.titleCO emissions and temperature analysis from an experimental and numerical study of partially premixed methane flames impinging onto a cooking potes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jngse.2020.103771es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jngse.2020.103771
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license