Mostrar el registro sencillo

dc.contributor.authorCorte León, Paula
dc.contributor.authorZhukova Zhukova, Valentina
dc.contributor.authorChizhik, Alexander
dc.contributor.authorBlanco Aranguren, Juan María
dc.contributor.authorIpatov, Mihail
dc.contributor.authorGonzález Legarreta, Lorena 
dc.contributor.authorZhukov Egorova, Arkady Pavlovich
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2021-01-08T16:03:33Z
dc.date.available2021-01-08T16:03:33Z
dc.date.issued2020-12-16
dc.identifier.issn1424-8220
dc.identifier.otherPGC2018-099530-B-C31es_ES
dc.identifier.urihttp://hdl.handle.net/10902/20286
dc.description.abstractThere is a pressing demand to improve the performance of cost-effective soft magnetic materials for use in high performance sensors and devices. Giant Magneto-impedance effect (GMI), or fast single domain wall (DW) propagation can be observed in properly processed magnetic microwires. In this paper we have identified the routes to obtain microwires with unique combination of magnetic properties allowing observation of fast and single DW propagation and GMI effect in the same microwire. By modifying the annealing conditions, we have found the appropriate regimes allowing achievement of the highest GMI ratio and the fastest DW dynamics. The observed experimental results are discussed considering the radial distribution of magnetic anisotropy and the correlation of GMI effect, and DW dynamics with bulk and surface magnetization processes. Studies of both Fe- and Co-rich microwires, using the magneto-optical Kerr effect, MOKE, provide information on the magnetic structure in the outer shell of microwires. We have demonstrated the existence of the spiral helical structure in both studied microwires. At the same time, torsion mechanical stresses induce helical bistability in the same microwires, which allow us to consider these microwires as materials suitable for sensors based on the large Barkhausen jump.es_ES
dc.description.sponsorshipThis work was funded by Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE) by the Government of the Basque Country under PIBA 2018-44 project and Elkartek (CEMAP and AVANSITE) projects and by the University of Basque Country under the scheme of “Ayuda a Grupos Consolidados” (Ref.: GIU18/192).es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSensors, 2020, 20(24), 7203es_ES
dc.subject.otherMagnetic microwireses_ES
dc.subject.otherMagnetic sensorses_ES
dc.subject.otherGiant magnetoimpedancees_ES
dc.subject.otherDomain wall propagationes_ES
dc.subject.otherMagnetostriction coefficientes_ES
dc.subject.otherPost-processinges_ES
dc.subject.otherMagnetic anisotropyes_ES
dc.titleMagnetic microwires with unique combination of magnetic properties suitable for various magnetic sensor applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/s20247203
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.