Mostrar el registro sencillo

dc.contributor.authorCasado Coterillo, Clara 
dc.contributor.authorGarea Vázquez, Aurora 
dc.contributor.authorIrabien Gulías, Ángel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-12-22T13:55:08Z
dc.date.available2020-12-22T13:55:08Z
dc.date.issued2020-12-08
dc.identifier.issn2077-0375
dc.identifier.otherCTQ2016-76231-C2-1-Res_ES
dc.identifier.otherPID2019-108136RB-C31es_ES
dc.identifier.urihttp://hdl.handle.net/10902/20231
dc.description.abstractMembrane technology is a simple and energy-conservative separation option that is considered to be a green alternative for CO2 capture processes. However, commercially available membranes still face challenges regarding water and chemical resistance. In this study, the effect of water and organic contaminants in the feed stream on the CO2/CH4 separation performance is evaluated as a function of the hydrophilic and permselective features of the top layer of the membrane. The membranes were a commercial hydrophobic membrane with a polydimethylsiloxane (PDMS) top layer (Sulzer Chemtech) and a hydrophilic flat composite membrane with a hydrophilic [emim][ac] ionic liquid–chitosan (IL–CS) thin layer on a commercial polyethersulfone (PES) support developed in our laboratory. Both membranes were immersed in NaOH 1M solutions and washed thoroughly before characterization. The CO2 permeance was similar for both NaOH-treated membranes in the whole range of feed concentration (up to 250 GPU). The presence of water vapor and organic impurities of the feed gas largely affects the gas permeance through the hydrophobic PDMS membrane, while the behavior of the hydrophilic IL–CS/PES membranes is scarcely affected. The effects of the interaction of the contaminants in the membrane selective layer are being further evaluated.es_ES
dc.description.sponsorshipThis research was funded by the Spanish Ministry of Science and Innovation; project CTQ2016-76231-C2-(AEI/FEDER, UE) and project PID2019-108136RB-C31).es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMembranes, 2020, 10(12), 405es_ES
dc.subject.otherComposite membraneses_ES
dc.subject.otherCO2/CH4 separationes_ES
dc.subject.otherWater and organic pollutantses_ES
dc.subject.otherHydrophilic/hydrophobic characteres_ES
dc.subject.otherBiogas upgradinges_ES
dc.subject.otherSustainable energyes_ES
dc.titleEffect of water and organic pollutant in CO2/CH4 separation using hydrophilic and hydrophobic composite membraneses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/membranes10120405
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.