Mostrar el registro sencillo

dc.contributor.authorZhukov Egorova, Arkady Pavlovich
dc.contributor.authorIpatov, Mihail
dc.contributor.authorTalaat, Ahmed
dc.contributor.authorBlanco Aranguren, Juan María
dc.contributor.authorHernando Grande, Blanca
dc.contributor.authorGonzález Legarreta, Lorena 
dc.contributor.authorSuñol Martínez, Joan Josep
dc.contributor.authorZhukova Zhukova, Valentina
dc.date.accessioned2020-12-14T16:08:48Z
dc.date.available2020-12-14T16:08:48Z
dc.date.issued2017-02-08
dc.identifier.issn2073-4352
dc.identifier.otherMAT2013-47231-C2-1-Pes_ES
dc.identifier.otherMAT2013-47231-C2-2-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/20154
dc.description.abstractWe overviewed the correlation between the structure, magnetic and transport properties of magnetic microwires prepared by the Taylor-Ulitovsky method involving rapid quenching from the melt and drawing of the composite (metallic core, glass coated) wire. We showed that this method can be useful for the preparation of different families of magnetic microwires: soft magnetic microwires displaying Giant magnetoimpedance (GMI) effect, semi-hard magnetic microwires, microwires with granular structure exhibiting Giant Magnetoresistance (GMR) effect and Heusler-type microwires. Magnetic and transport properties of magnetic microwires depend on the chemical composition of metallic nucleus and on the structural features (grain size, precipitating phases) of prepared microwires. In all families of crystalline microwires, their structure, magnetic and transport properties are affected by internal stresses induced by the glass coating, depending on the quenching rate. Therefore, properties of glass-coated microwires are considerably different from conventional bulk crystalline alloys.es_ES
dc.description.sponsorshipThis work was supported by Spanish Ministry of Economy and Competitiveness (MINECO) under Projects MAT2013-47231-C2-1-P and MAT2013-47231-C2-2-P. The authors thank for technical and human support provided by SGIker (Magnetic Measurements Gipuzkoa) of UPV/EHU. VZ and AZ wish to acknowledge the support under Program of Mobility of the Researchers of the Basque Government (grants MV-2016-1-0025 and MV-2016-1-0018 respectively).es_ES
dc.format.extent44 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceCrystals, 2017, 7(2), 41es_ES
dc.subject.otherMagnetic microwireses_ES
dc.subject.otherNanocrystalline materialses_ES
dc.subject.otherGiant magneto-impedance effectes_ES
dc.subject.otherGiant magnetoresistance effectes_ES
dc.subject.otherTaylor–Ulitvosky techniquees_ES
dc.subject.otherMagnetostrictiones_ES
dc.subject.otherAnnealinges_ES
dc.subject.otherHeusler alloyses_ES
dc.titleCorrelation of crystalline structure with magnetic and transport properties of glass-coated microwireses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/cryst7020041
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.