Mostrar el registro sencillo

dc.contributor.authorLegasa Ríos, Mikel Néstor 
dc.contributor.authorGutiérrez Llorente, José Manuel
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-11-26T09:45:16Z
dc.date.available2021-01-31T03:45:16Z
dc.date.issued2020-07
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.otherCGL2015-66583- Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/19910
dc.description.abstractABSTRACT: Many existing approaches for multisite weather generation try to capture several statistics of the observed data (e.g. pairwise correlations) in order to generate spatially and temporarily consistent series. In this work we analyse the application of Bayesian networks to this problem, focusing on precipitation occurrence and considering a simple case study to illustrate the potential of this new approach. We use Bayesian networks to approximate the multi-variate (-site) probability distribution of observed gauge data, which is factorized according to the relevant (marginal and conditional) dependencies. This factorization allows the simulation of synthetic samples from the multivariate distribution, thus providing a sound and promising methodology for multisite precipitation series generation.es_ES
dc.description.sponsorshipWe acknowledge funding provided by the project MULTI‐SDM (CGL2015‐ 66583‐R, MINECO/FEDER).es_ES
dc.format.extent18 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Geophysical Uniones_ES
dc.rights© American Geophysical Uniones_ES
dc.sourceWater Resources Research July 2020 Volume56, Issue7 e2019WR026416es_ES
dc.titleMultisite Weather Generators Using Bayesian Networks: An Illustrative Case Study for Precipitation Occurrencees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1029/2019WR026416
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo