Multisite Weather Generators Using Bayesian Networks: An Illustrative Case Study for Precipitation Occurrence
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/19910DOI: 10.1029/2019WR026416
ISSN: 0043-1397
ISSN: 1944-7973
Registro completo
Mostrar el registro completo DCFecha
2020-07Derechos
© American Geophysical Union
Publicado en
Water Resources Research July 2020 Volume56, Issue7 e2019WR026416
Editorial
American Geophysical Union
Resumen/Abstract
ABSTRACT: Many existing approaches for multisite weather generation try to capture several statistics of the observed data (e.g. pairwise correlations) in order to generate spatially and temporarily consistent series. In this work we analyse the application of Bayesian networks to this problem, focusing on precipitation occurrence and considering a simple case study to illustrate the potential of this new approach. We use Bayesian networks to approximate the multi-variate (-site) probability distribution of observed gauge data, which is factorized according to the relevant (marginal and conditional) dependencies. This factorization allows the simulation of synthetic samples from the multivariate distribution, thus providing a sound and promising methodology for multisite precipitation series generation.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D52 Artículos [1337]
- D52 Proyectos de investigación [424]