Mostrar el registro sencillo

dc.contributor.authorCastillo Ron, Enrique 
dc.contributor.authorCobo Ortega, Ángel 
dc.contributor.authorJubete Portilla, Francisco
dc.contributor.authorPruneda González, Rosa Eva
dc.contributor.authorCastillo Sánchez, Carmen
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-04-24T07:43:49Z
dc.date.available2013-04-24T07:43:49Z
dc.date.issued2001
dc.identifier.issn1095-7162
dc.identifier.issn0895-4798
dc.identifier.urihttp://hdl.handle.net/10902/1988
dc.description.abstractIn this paper we discuss the power of a pivoting transformation introduced by Castillo, Cobo, Jubete, andPruned a [Orthogonal Sets and Polar Methods in Linear Algebra: Applications to Matrix Calculations, Systems of Equations and Inequalities, and Linear Programming, John Wiley, New York, 1999] andits multiple applications. The meaning of each sequential tableau appearing during the pivoting process is interpreted. It is shown that each tableau of the process corresponds to the inverse of a row modified matrix and contains the generators of the linear subspace orthogonal to a set of vectors andits complement. This transformation, which is basedon the orthogonality concept, allows us to solve many problems of linear algebra, such as calculating the inverse and the determinant of a matrix, updating the inverse or the determinant of a matrix after changing a row (column), determining the rank of a matrix, determining whether or not a set of vectors is linearly independent, obtaining the intersection of two linear subspaces, solving systems of linear equations, etc. When the process is appliedto inverting a matrix andcalculating its determinant, not only is the inverse of the final matrix obtained, but also the inverses and the determinants of all its block main diagonal matrices, all without extra computations.es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rights© 2000 Society for Industrial and Applied Mathematicses_ES
dc.sourceSIAM Journal on Matrix Analysis and Applications, 2001, 22(3), 666–681es_ES
dc.subject.otherCompatibilityes_ES
dc.subject.otherDeterminantes_ES
dc.subject.otherIntersection of linear subspaceses_ES
dc.subject.otherLinear systems of equationses_ES
dc.subject.otherRank of a matrixes_ES
dc.subject.otherUpdating inverseses_ES
dc.titleAn orthogonally based pivoting transformation of matrices and some applicationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1137/S0895479898349720
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo