Mostrar el registro sencillo

dc.contributor.authorTristán Teja, Carolina 
dc.contributor.authorFallanza Torices, Marcos 
dc.contributor.authorIbáñez Mendizábal, Raquel 
dc.contributor.authorOrtiz Uribe, Inmaculada 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-11-04T15:50:55Z
dc.date.available2020-11-04T15:50:55Z
dc.date.issued2020-10-19
dc.identifier.issn2076-3417
dc.identifier.otherRTI2018-093310-B-I00es_ES
dc.identifier.otherCTM2017-87850-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/19555
dc.description.abstractSalinity gradient energy harvesting by reverse electrodialysis (RED) is a promising renewable source to decarbonize desalination. This work surveys the potential reduction in energy consumption and carbon emissions gained from RED integration in 20 medium-to-large-sized seawater reverse osmosis (SWRO) desalination plants spread worldwide. Using the validated RED system’s model from our research group, we quantified the grid mix share of the SWRO plant’s total energy demand and total emissions RED would abate (i) in its current state of development and (ii) if captured all salinity gradient exergy (SGE). Results indicate that more saline and warmer SWRO brines enhance RED’s net power density, yet source availability may restrain specific energy supply. If all SGE were harnessed, RED could supply ~40% of total desalination plants’ energy demand almost in all locations, yet energy conversion irreversibility and untapped SGE decline it to ~10%. RED integration in the most emission-intensive SWRO plants could relieve up to 1.95 kg CO2-eq m−3. Findings reveal that RED energy recovery from SWRO concentrate effluents could bring desalination sector sizeable energy and emissions savings provided future advancements bring RED technology closer to its thermodynamic limit.es_ES
dc.description.sponsorshipThis research was funded by the LIFE programme (LIFE19 ENV/ES/000143) and the Spanish Ministry of Science, Innovation and Universities (RTI2018-093310-B-I00 and CTM2017-87850-R, and the FPI grant awarded to C.T., PRE2018-086454).es_ES
dc.format.extent21 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceApplied Sciences, 2020, 10(20), 7317es_ES
dc.subject.otherSalinity gradientes_ES
dc.subject.otherRenewable energyes_ES
dc.subject.otherElectro-membrane processes_ES
dc.subject.otherGlobal warming potentiales_ES
dc.subject.otherWaste-to-wealthes_ES
dc.subject.otherSustainabilityes_ES
dc.titleReverse electrodialysis: potential reduction in energy and emissions of desalinationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/app10207317
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0  (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 (CC BY) license.