Mostrar el registro sencillo

dc.contributor.authorDíez Fernández, Luis Francisco 
dc.contributor.authorFernández Gutiérrez, Alfonso
dc.contributor.authorKhan, Muhammad
dc.contributor.authorZaki, Yasir
dc.contributor.authorAgüero Calvo, Ramón 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-10-19T13:16:55Z
dc.date.available2020-10-19T13:16:55Z
dc.date.issued2020-09-04
dc.identifier.issn2076-3417
dc.identifier.otherRTI2018-093475-A-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/19360
dc.description.abstractIt is well known that transport protocol performance is severely hindered by wireless channel impairments. We study the applicability of Machine Learning (ML) techniques to predict congestion status of 5G access networks, in particular mmWave links. We use realistic traces, using the 3GPP channel models, without being affected using legacy congestion-control solutions. We start by identifying the metrics that might be exploited from the transport layer to learn the congestion state: delay and inter-arrival time. We formally study their correlation with the perceived congestion, which we ascertain based on buffer length variation. Then, we conduct an extensive analysis of various unsupervised and supervised solutions, which are used as a benchmark. The results yield that unsupervised ML solutions can detect a large percentage of congestion situations and they could thus bring interesting possibilities when designing congestion-control solutions for next-generation transport protocols.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Government (MINECO) by means of the project FIERCE “Future Internet Enabled Resilient smart CitiEs” under Grant Agreement No. RTI2018-093475-A-I00.es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceApplied Sciences, 2020, 10(18), 6164es_ES
dc.subject.otherMachine learninges_ES
dc.subject.othermmWavees_ES
dc.subject.other5Ges_ES
dc.subject.otherCongestion controles_ES
dc.subject.otherNs-3es_ES
dc.subject.otherNetwork simulationes_ES
dc.subject.otherUnsupervised learninges_ES
dc.titleCan we exploit machine learning to predict congestion over mmWave 5G channels?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/app10186164
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.