Mostrar el registro sencillo

dc.contributor.authorGugnani, Shashank
dc.contributor.authorBlanco Real, José Carlos 
dc.contributor.authorKiss, Tamas
dc.contributor.authorTerstyanszky, Gabor
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-10-08T13:00:42Z
dc.date.available2020-10-08T13:00:42Z
dc.date.issued2016-12
dc.identifier.issn1570-7873
dc.identifier.urihttp://hdl.handle.net/10902/19311
dc.description.abstractCloud computing offers massive scalability and elasticity required by many scientific and commercial applications. Combining the computational and data handling capabilities of clouds with parallel processing also has the potential to tackle Big Data problems efficiently. Science gateway frameworks and workflow systems enable application developers to implement complex applications and make these available for end-users via simple graphical user interfaces. The integration of such frameworks with Big Data processing tools on the cloud opens new opportunities for application developers. This paper investigates how workflow systems and science gateways can be extended with Big Data processing capabilities. A generic approach based on infrastructure aware workflows is suggested and a proof of concept is implemented based on the WS-PGRADE/gUSE science gateway framework and its integration with the Hadoop parallel data processing solution based on the MapReduce paradigm in the cloud. The provided analysis demonstrates that the methods described to integrate Big Data processing with workflows and science gateways work well in different cloud infrastructures and application scenarios, and can be used to create massively parallel applications for scientific analysis of Big Data.es_ES
dc.description.sponsorshipThis work is partially funded by the CloudSME Cloud-Based Simulation platform for Manufacturing and Engineering Project No. 608886 (FP7-2013-NMPICT-FOF). Financial support from Programa de Personal Investigador en Formacion Predoctoral from Universidad de ´ Cantabria, co-funded by the regional government of Cantabria, has also been utilized.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceJournal of Grid Computing, 2016, 14(4), 589-601es_ES
dc.subject.otherBig dataes_ES
dc.subject.otherHadoopes_ES
dc.subject.otherMapReducees_ES
dc.subject.otherScience gatewayes_ES
dc.subject.otherWS-PGRADEes_ES
dc.subject.otherWorkflowes_ES
dc.titleExtending science gateway frameworks to support Big Data applications in the cloudes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s10723-016-9369-8es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s10723-016-9369-8
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International