dc.contributor.author | Díaz Sainz, Guillermo | |
dc.contributor.author | Álvarez Guerra, Manuel | |
dc.contributor.author | Ávila Bolívar, Beatriz | |
dc.contributor.author | Solla Gullón, José | |
dc.contributor.author | Montiel Leguey, Vicente | |
dc.contributor.author | Irabien Gulías, Ángel | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2020-09-30T14:21:25Z | |
dc.date.available | 2023-02-28T00:17:35Z | |
dc.date.issued | 2021-02-01 | |
dc.identifier.issn | 1385-8947 | |
dc.identifier.issn | 1873-3212 | |
dc.identifier.other | CTQ2016-76231-C2-1-R | es_ES |
dc.identifier.other | CTQ2016-76231-C2-2-R | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/19249 | |
dc.description.abstract | The electrochemical conversion of CO2 is gaining increasing attention because it could be considered as an appealing strategy for making value-added products at mild conditions from CO2 captured. In this work, we report a process for the electrocatalytic reduction of CO2 to formate (HCOO-) operating in a continuous way, employing a single pass of the reactants through the electrochemical reactor and using Bi carbon supported nanoparticles in the form of a membrane electrode assembly composed by a Gas Diffusion Electrode, a current collector and a cationic exchange membrane. This contribution presents the best trade-off between HCOO- concentration, Faradaic Efficiency and energy consumption in the literature. We also show noteworthy values of energy consumption required of only 180 kWh·kmol-1 of HCOO-, lower than previous approaches, working at current densities that allow achieving formate concentration higher than 300 g·L-1 and simultaneously, a Faradaic Efficiency close to 90%. The results here displayed make the electrochemical approach closer for future implementation at the industrial scale. | es_ES |
dc.description.sponsorship | The authors of this work would like to acknowledge to the financial support from the MINECO, through the projects CTQ2016-76231-C2-1-R and CTQ2016-76231-C2-2-R (AEI/FEDER, UE). J.S.G acknowledges financial support from VITC (Vicerrectorado de Investigación y Transferencia de Conocimiento) of the University of Alicante (UTALENTO16-02). G.D.S, M.A.G and A.I filed a patent application on the experimental reaction system discussed here. | es_ES |
dc.format.extent | 28 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Chemical Engineering Journal, 2021, 405, 126965 | es_ES |
dc.subject.other | CO2 electroreduction | es_ES |
dc.subject.other | Formate | es_ES |
dc.subject.other | Bismuth electrocatalysts | es_ES |
dc.subject.other | Gas Diffusion Electrode (GDE) | es_ES |
dc.subject.other | Membrane electrode assembly (MEA) | es_ES |
dc.subject.other | Electrochemical filter press reactor | es_ES |
dc.title | Improving trade-offs in the figures of merit of gas-phase single-pass continuous CO2 electrocatalytic reduction to formate | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.1016/j.cej.2020.126965 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1016/j.cej.2020.126965 | |
dc.type.version | acceptedVersion | es_ES |