Mostrar el registro sencillo

dc.contributor.authorSantana Martínez, Juan Ramón 
dc.contributor.authorSánchez González, Luis 
dc.contributor.authorSotres García, Pablo 
dc.contributor.authorLanza Calderón, Jorge 
dc.contributor.authorLlorente Cabello, Tomás
dc.contributor.authorMuñoz Gutiérrez, Luis 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-09-28T16:12:27Z
dc.date.available2020-09-28T16:12:27Z
dc.date.issued2020-07-20
dc.identifier.issn2169-3536
dc.identifier.otherRTI2018-093475-A-I00es_ES
dc.identifier.urihttp://hdl.handle.net/10902/19211
dc.description.abstractCities are growing at a dizzying pace and they require improved methods to manage crowded areas. Crowd management stands for the decisions and actions taken to supervise and control densely populated spaces and it involves multiple challenges, from recognition and assessment to application of actions tailored to the current situation. To that end, Wi-Fi-based monitoring systems have emerged as a cost-effective solution for the former one. The key challenge that they impose is the requirement to handle large datasets and provide results in near real-time basis. However, traditional big data and event processing approaches have important shortcomings while dealing with crowd management information. In this paper, we describe a novel system architecture for real-time crowd recognition for smart cities and smart buildings that can be easily replicated. The described system proposes a privacy-aware platform that enables the application of artificial intelligence mechanisms to assess crowds' behavior in buildings employing sensed Wi-Fi traces. Furthermore, the present paper shows the implementation of the system in two buildings, an airport and a market, as well as the results of applying a set of classification algorithms to provide crowd management information.es_ES
dc.description.sponsorshipThis work was supported in part by the Spanish Government (MINECO) by means of the Project Future Internet Enabled Resilient CitiEs (FIERCE) under Grant RTI2018-093475-A-I00, and in part by the European Union’s Horizon 2020 Programme through the European project Federated CPS Digital Innovation Hubs for the Smart Anything Everywhere Initiative (FED4SAE) under Grant 761708.es_ES
dc.format.extent12 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Access, 2020, 8, 135394-135405es_ES
dc.subject.otherSmart cityes_ES
dc.subject.otherInternet of Thingses_ES
dc.subject.otherCrowd managementes_ES
dc.subject.otherArtificial intelligencees_ES
dc.subject.otherPositioninges_ES
dc.titleA privacy-aware crowd management system for smart cities and smart buildingses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/ACCESS.2020.3010609es_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/761708/EU/Federated CPS Digital Innovation Hubs for the Smart Anything Everywhere Initiative/FED4SAE/es_ES
dc.identifier.DOI10.1109/ACCESS.2020.3010609
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International