Mostrar el registro sencillo

dc.contributor.authorAlbo Sánchez, Jonathan 
dc.contributor.authorQadir, Muhammad I.
dc.contributor.authorSamperi, Mario
dc.contributor.authorAlves Fernandes, Jesum
dc.contributor.authorPedro del Valle, Imanol de 
dc.contributor.authorDupont, Jairton
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-09-21T11:08:39Z
dc.date.available2023-01-31T00:30:47Z
dc.date.issued2021-01-15
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.otherPID2019-104050RA-I00es_ES
dc.identifier.otherMAT2017-83631-C3-3-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/19140
dc.description.abstractThe slow kinetics in the photocatalytic reduction of CO2, as well as the low quantum efficiencies achieved, directly related to the photocatalyst and reactor configuration applied, limit the widespread use of this technology. In light of this, the main objective of this work is to evaluate the continuous photocatalytic conversion of CO2 into methanol in an optofluidic microreactor (with enhanced mass transport, large volume/active area ratio and uniform light distribution) using Cu nanoparticles synthesized in the hydrophilic 3-methyl-n-butylimidazolium tetrafluoroborate (BMIm.BF4) ionic liquid and embedded in TiO2 (P25). The ionic liquid not only acts as a template to control the size of the nanoparticles but also as a stabilizing agent. The analysis includes the effect of structural parameters of the photoactive layer such as Cu content (from 0.8 to 6.8 wt%) and photocatalyst loading (0.5–3 mg·cm−2), as well as operating variables such as UV and visible light intensities (2.5–10 mW·cm−2) and cell configuration (i.e. one or two compartments). The maximum methanol yield reached from the continuous transformation of CO2 is r = 230.3 µmol∙g−1∙h−1 at 2 wt% Cu content, photocatalyst loading of 2 mg·cm−2, UV light intensity of 10 mW·cm−2 and a two-compartment microreactor configuration. This result outperforms the values previously reported for Cu/TiO2-based systems using optofluidic microreactors, as well as most of those in common CO2 photoreactors.es_ES
dc.description.sponsorshipThe authors gratefully acknowledge the financial support from the Spanish Ministry of Science and Innovation (MICINN) under Ramón y Cajal programme (RYC-2015-17080), as well as PID2019-104050RA-I00 and MAT2017-83631-C3-3-R projects.es_ES
dc.format.extent43 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceChemical Engineering Journal, 2021, 404, 126643es_ES
dc.subject.otherCO2 photoreductiones_ES
dc.subject.otherCu/TiO2 photocatalystes_ES
dc.subject.otherIonic liquidses_ES
dc.subject.otherMethanoles_ES
dc.subject.otherOptofluidic microreactores_ES
dc.titleUse of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO2 for an efficient photoreduction of CO2 to methanoles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.cej.2020.126643es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.cej.2020.126643
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license