Mostrar el registro sencillo

dc.contributor.authorHemri, Stephan
dc.contributor.authorBhend, Jonas
dc.contributor.authorLiniger, Mark A.
dc.contributor.authorGarcía Manzanas, Rodrigo 
dc.contributor.authorSiegert, Stefan
dc.contributor.authorStephenson, David B.
dc.contributor.authorGutiérrez Llorente, José Manuel
dc.contributor.authorBrookshaw, Anca
dc.contributor.authorDoblas Reyes, Francisco Javier
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-08-03T14:46:34Z
dc.date.available2020-08-03T14:46:34Z
dc.date.issued2020-09
dc.identifier.issn0930-7575
dc.identifier.issn1432-0894
dc.identifier.otherCGL2017-85791-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/19010
dc.description.abstractSeasonal forecasts of variables like near-surface temperature or precipitation are becoming increasingly important for a wide range of stakeholders. Due to the many possibilities of recalibrating, combining, and verifying ensemble forecasts, there are ambiguities of which methods are most suitable. To address this we compare approaches how to process and verify multi-model seasonal forecasts based on a scientific assessment performed within the framework of the EU Copernicus Climate Change Service (C3S) Quality Assurance for Multi-model Seasonal Forecast Products (QA4Seas) contract C3S 51 lot 3. Our results underpin the importance of processing raw ensemble forecasts differently depending on the final forecast product needed. While ensemble forecasts benefit a lot from bias correction using climate conserving recalibration, this is not the case for the intrinsically bias adjusted multi-category probability forecasts. The same applies for multi-model combination. In this paper, we apply simple, but effective, approaches for multi-model combination of both forecast formats. Further, based on existing literature we recommend to use proper scoring rules like a sample version of the continuous ranked probability score and the ranked probability score for the verification of ensemble forecasts and multi-category probability forecasts, respectively. For a detailed global visualization of calibration as well as bias and dispersion errors, using the Chi-square decomposition of rank histograms proved to be appropriate for the analysis performed within QA4Seas.es_ES
dc.description.sponsorshipThe research leading to these results is part of the Copernicus Climate Change Service (C3S) (Framework Agreement number C3S_51_Lot3_BSC), a program being implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Commission. Francisco Doblas-Reyes acknowledges the support by the H2020 EUCP project (GA 776613) and the MINECO-funded CLINSA project (CGL2017-85791-R).es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceClimate Dynamics, 2020, 55(5-6), 1141-1157es_ES
dc.subject.otherSeasonal forecastses_ES
dc.subject.otherMulti-model combinationes_ES
dc.subject.otherRecalibrationes_ES
dc.titleHow to create an operational multi-model of seasonal forecasts?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1007/s00382-020-05314-2es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00382-020-05314-2
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International