Mostrar el registro sencillo

dc.contributor.authorPérez López, Jesús Ramón 
dc.contributor.authorTorres Jiménez, Rafael Pedro 
dc.contributor.authorDomingo Gracia, Marta 
dc.contributor.authorValle López, Luis 
dc.contributor.authorBasterrechea Verdeja, José 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-08-03T14:33:18Z
dc.date.available2020-08-03T14:33:18Z
dc.date.issued2020-06-08
dc.identifier.issn2169-3536
dc.identifier.otherTEC2017-86779-C2-1-Res_ES
dc.identifier.otherUCAN08-4E-010es_ES
dc.identifier.urihttp://hdl.handle.net/10902/19008
dc.description.abstractThis paper presents an analysis of the massive multiple input and multiple output (MIMO) channel in an indoor picocell with a high number of active user terminals and a base station consisting of a virtual array with up to one hundred elements. The analysis is based on the results of a measurement campaign carried out in the 3.2 to 4 GHz band in a scenario of reduced size and with a symmetrical geometry, in which users are also placed in an orderly manner. The channel meets the condition of favorable propagation depending on several factors, one of the most important being the spatial distribution of users. Results concerning the inverse condition number as well as the channel sum capacity are included. Another factor that determines the performance of massive MIMO systems when operated in an orthogonal frequency division multiplexing (OFDM) framework is the frequency selectivity of the channel that limits the size of the coherence block (ChB). Focusing on the most significant results achieved, it can be concluded that the channel reaches a capacity of 89% with respect to an i.i.d. Rayleigh channel. Concerning the cumulative distribution function (CDF) of the sum capacity, it can also be observed that the tails are not very pronounced, which indicates that a homogeneous service can be given to all users. Regarding the number of samples that make up the ChB, although it is high in all cases (of the order of tens of thousands), it strongly depends on the degree of correlation used to calculate the coherence bandwidth.es_ES
dc.description.sponsorshipThis work was supported in part by the Spanish Ministerio de Economía, Industria y Competitividad, under Grant TEC2017-86779-C2-1-R, in part by the European economic community (EEC) through Fondo Europeo de Desarrollo Regional (FEDER) funds, and in part by the Spanish Ministerio de Ciencia e Innovación under Grant UCAN08-4E-010.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceIEEE Access, 2020, 8, 107025-107034es_ES
dc.subject.other5G mobile systemses_ES
dc.subject.otherChannel capacityes_ES
dc.subject.otherCoherence bandwidthes_ES
dc.subject.otherCoherence blockes_ES
dc.subject.otherMassive MIMOes_ES
dc.titleAnalysis of massive MIMO performance in an indoor picocell with high number of userses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/ACCESS.2020.3000602es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/ACCESS.2020.3000602
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International