• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Selection of quasar candidates from combined radio and optical surveys using neural networks

    Ver/Abrir
    Selection of quasar.pdf (391.2Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/1891
    DOI: 10.1111/j.1365-2966.2004.08056.x
    ISSN: 1365-2966
    ISSN: 0035-8711
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Carballo Fidalgo, RuthAutoridad Unican; González Serrano, José IgnacioAutoridad Unican; Cofiño González, Antonio SantiagoAutoridad Unican
    Fecha
    2004-09
    Derechos
    © 2004 RAS
    Publicado en
    Monthly Notices of the Royal Astronomical Society, 2004, 353(1), 211-220
    Editorial
    Royal Astronomical Society
    Enlace a la publicación
    http://dx.doi.org/10.1111/j.1365-2966.2004.08056.x
    Palabras clave
    Methods: data analysis
    Methods: statistical
    Quasars: general
    Resumen/Abstract
    The application of supervised artificial neural networks (ANNs) for quasar selection from combined radio and optical surveys with photometric and morphological data is investigated, using the list of candidates and their classification from the work of White et al. Seven input parameters and one output, evaluated to 1 for quasars and 0 for non-quasars during the training, were used, with architectures 7: 1 and 7: 2: 1. Both models were trained on samples of ∼800 sources and yielded similar performance on independent test samples, with reliability as large as 87 per cent at 80 per cent completeness (or 90 to 80 per cent for completeness from 70 to 90 per cent). For comparison, the quasar fraction from the original candidate list was 56 per cent. The accuracy is similar to that found by White et al. using supervised learning with oblique decision trees and training samples of similar size. In view of the large degree of overlapping between quasars and non-quasars in the parameter space, this performance probably approaches the maximum value achievable with this data base. Predictions of the probabilities for the 98 candidates without spectroscopic classification in White et al. are presented and compared with the results from their work. The values obtained for the two ANN models and the decision trees are found to be in good agreement. This is the first analysis of the performance of ANNs for the selection of quasars. Our work shows that ANNs provide a promising technique for the selection of specific object types in astronomical data bases.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D52 Artículos [1337]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España