Mostrar el registro sencillo

dc.contributor.authorCasas Rentería, Eduardo 
dc.contributor.authorRaymond, Jean-Pierre
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-04-09T12:50:10Z
dc.date.available2013-04-09T12:50:10Z
dc.date.issued2006
dc.identifier.issn1095-7138
dc.identifier.issn0363-0129
dc.identifier.urihttp://hdl.handle.net/10902/1889
dc.description.abstractWe study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The control is the trace of the state on the boundary of the domain, which is assumed to be a convex, polygonal, open set in R2. Piecewise linear finite elements are used to approximate the control as well as the state. We prove that the error estimates are of order O(h1−1/p) for some p > 2, which is consistent with the W1−1/p,p(Γ)-regularity of the optimal control.es_ES
dc.format.extent26 p.es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rights© 2006 Society for Industrial and Applied Mathematicses_ES
dc.sourceSIAM Journal on Control and Optimization, 2006, 45(5), 1586–1611es_ES
dc.subject.otherDirichlet controles_ES
dc.subject.otherSemilinear elliptic equationses_ES
dc.subject.otherNumerical approximationes_ES
dc.subject.otherError estimateses_ES
dc.titleError estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equationses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1137/050626600
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo