dc.contributor.author | Ciszak, Marzena | |
dc.contributor.author | Gutiérrez Llorente, José Manuel | |
dc.contributor.author | Cofiño González, Antonio Santiago | |
dc.contributor.author | Mirasso, Claudio | |
dc.contributor.author | Toral, Raúl | |
dc.contributor.author | Pesquera González, Luis | |
dc.contributor.author | Ortín González, Silvia | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2013-04-09T12:34:35Z | |
dc.date.available | 2013-04-09T12:34:35Z | |
dc.date.issued | 2005-10 | |
dc.identifier.issn | 1550-2376 | |
dc.identifier.issn | 1539-3755 | |
dc.identifier.uri | http://hdl.handle.net/10902/1888 | |
dc.description.abstract | Predictability of chaotic systems is limited, in addition to the precision of the knowledge of the initial conditions, by the error of the models used to extract the nonlinear dynamics from the time series. In this paper, we analyze the predictions obtained from the anticipated synchronization scheme using a chain of slave neural network approximate replicas of the master system. We compare the maximum prediction horizons obtained with those attainable using standard prediction techniques. | es_ES |
dc.format.extent | 8 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.rights | © 2005 The American Physical Society | * |
dc.source | Physical Review. E, Statistical, Non Linear and Soft Matter Physics, 2005, 72(4), 046218 | es_ES |
dc.title | Approach to predictability via anticipated synchronization | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | http://dx.doi.org/10.1103/PhysRevE.72.046218 | |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1103/PhysRevE.72.046218 | |
dc.type.version | publishedVersion | es_ES |