• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Statistical adjustment, calibration and downscaling of seasonal forecasts: a case-study for Southeast Asia

    Ver/Abrir
    StatisticalAdjustmen ... (19.04Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/18696
    DOI: 10.1007/s00382-020-05145-1
    ISSN: 0930-7575
    ISSN: 1432-0894
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    García Manzanas, RodrigoAutoridad Unican; Gutiérrez Llorente, José Manuel; Bhend, Jonas; Hemri, Stephan; Doblas-Reyes, Francisco Javier; Penabad, E.; Brookshaw, Anca
    Fecha
    2020-03
    Derechos
    © Springer. This is a post-peer-review, pre-copyedit version of an article published in Climate Dynamics. The final authenticated version is available online at: https://doi.org/10.1007/s00382-020-05145-1
    Publicado en
    Climate Dynamics, 2020, 54(5-6), 2869-2882
    Editorial
    Springer
    Enlace a la publicación
    https://doi.org/10.1007/s00382-020-05145-1
    Resumen/Abstract
    The present paper is a follow-on of the work presented in Manzanas et al. (Clim Dyn 53(3–4):1287–1305, 2019) which provides a comprehensive intercomparison of alternatives for the post-processing (statistical adjustment, calibration and downscaling) of seasonal forecasts for a particularly interesting region, Southeast Asia. To answer the questions that were raised in the preceding work, apart from Bias Adjustment (BA) and ensemble Re-Calibration (RC) methods—which transform directly the variable of interest,—we include here more complex Perfect Prognosis (PP) and Model Outputs Statistics (MOS) downscaling techniques—which operate on a selection of large-scale model circulation variables linked to the local observed variable of interest. Moreover, we test the suitability of BA and PP methods for the post-processing of daily—not only seasonal—time-series, which are often needed in a variety of sectoral applications (crop, hydrology, etc.) or to compute specific climate indices (heat waves, fire weather index, etc.). In addition, we also undertake an assessment of the effect that observational uncertainty may have for statistical post-processing. Our results indicate that PP methods (and to a lesser extent MOS) are highly case-dependent and their application must be carefully analyzed for the region/season/application of interest, since they can either improve or degrade the raw model outputs. Therefore, for those cases for which the use of these methods cannot be carefully tested by experts, our overall recommendation would be the use of BA methods, which seem to be a safe, easy to implement alternative that provide competitive results in most situations. Nevertheless, all methods (including BA ones) seem to be sensitive to observational uncertainty, especially regarding the reproduction of extremes and spells. For MOS and PP methods, this issue can even lead to important regional differences in interannual skill. The lessons learnt from this work can substantially benefit a wide range of end-users in different socio-economic sectors, and can also have important implications for the development of high-quality climate services.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D20 Proyectos de Investigación [328]
    • D52 Artículos [1337]
    • D52 Proyectos de investigación [424]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España