• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Clustering methods for statistical downscaling in short-range weather forecasts

    Ver/Abrir
    Clustering methods.pdf (2.908Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/1869
    DOI: 10.1175/1520-0493(2004)132<2169:CMFSDI>2.0.CO;2
    ISSN: 1520-0493
    ISSN: 0027-0644
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Gutiérrez Llorente, José Manuel; Cofiño González, Antonio SantiagoAutoridad Unican; Cano, R.; Rodríguez Díaz, Miguel ÁngelAutoridad Unican
    Fecha
    2004-09
    Derechos
    © Copyright [2004] American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.
    Publicado en
    Monthly Weather Review, 2004, 132(9), 2169–2183
    Editorial
    American Meteorological Society
    Enlace a la publicación
    http://dx.doi.org/10.1175/1520-0493(2004)132<2169:CMFSDI>2.0.CO;2
    Resumen/Abstract
    In this paper an application of clustering algorithms for statistical downscaling in short-range weather forecasts is presented. The advantages of this technique compared with standard nearest-neighbors analog methods are described both in terms of computational efficiency and forecast skill. Some validation results of daily precipitation and maximum wind speed operative downscaling (lead time 1–5 days) on a network of 100 stations in the Iberian Peninsula are reported for the period 1998–99. These results indicate that the weighting clustering method introduced in this paper clearly outperforms standard analog techniques for infrequent, or extreme, events (precipitation > 20 mm; wind > 80 km h−1). Outputs of an operative circulation model on different local-area or large-scale grids are considered to characterize the atmospheric circulation patterns, and the skill of both alternatives is compared.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D52 Artículos [1337]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España