Mostrar el registro sencillo

dc.contributor.authorGonzález Legarreta, Lorena 
dc.contributor.authorCorte León, Paula
dc.contributor.authorZhukova Zhukova, Valentina
dc.contributor.authorIpatov, Mihail
dc.contributor.authorBlanco Aranguren, Juan María
dc.contributor.authorGonzález Estévez, Julián María
dc.contributor.authorZhukov Egorova, Arkady Pavlovich
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-06-11T15:30:34Z
dc.date.available2020-06-11T15:30:34Z
dc.date.issued2020-03-11
dc.identifier.issn1424-8220
dc.identifier.otherPGC2018-099530-B-C31es_ES
dc.identifier.urihttp://hdl.handle.net/10902/18684
dc.description.abstractMagnetic microwires can present excellent soft magnetic properties and a giant magnetoimpedance effect. In this paper, we present our last results on the effect of postprocessing allowing optimization of the magnetoimpedance effect in Co-rich microwires suitable for magnetic microsensor applications. Giant magnetoimpedance effect improvement was achieved either by annealing or stress-annealing. Annealed Co-rich presents rectangular hysteresis loops. However, an improvement in magnetoimpedance ratio is observed at fairly high annealing temperatures over a wide frequency range. Application of stress during annealing at moderate values of annealing temperatures and stress allows for a remarkable decrease in coercivity and increase in squareness ratio and further giant magnetoimpedance effect improvement. Stress-annealing, carried out at sufficiently high temperatures and/or stress allowed induction of transverse magnetic anisotropy, as well as magnetoimpedance effect improvement. Enhanced magnetoimpedance ratio values for annealed and stress-annealed samples and frequency dependence of the magnetoimpedance are discussed in terms of the radial distribution of the magnetic anisotropy. Accordingly, we demonstrated that the giant magnetoimpedance effect of Co-rich microwires can be tailored by controlling the magnetic anisotropy of Co-rich microwires, using appropriate thermal treatment.es_ES
dc.description.sponsorshipThis work was supported by Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE) and by the Government of the Basque Country under PIBA 2018-44 projects.es_ES
dc.format.extent17 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.es_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSensors, 2020, 20(6), 1558es_ES
dc.subject.otherAmorphous microwireses_ES
dc.subject.otherGiant magnetoimpedance effectes_ES
dc.subject.otherMagnetoelastic anisotropyes_ES
dc.subject.otherThermal treatmentes_ES
dc.subject.otherInternal stresseses_ES
dc.subject.otherInduced magnetic anisotropyes_ES
dc.titleOptimization of magnetic properties and GMI effect of thin co-rich microwires for GMI microsensorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/s20061558
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.Excepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.