Mostrar el registro sencillo

dc.contributor.authorIturrioz-Rodríguez, Nerea
dc.contributor.authorCorrea-Duarte, Miguel Ángel
dc.contributor.authorValiente Barroso, Rafael 
dc.contributor.authorLópez Fanarraga, Mónica 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-06-10T15:26:47Z
dc.date.available2020-06-10T15:26:47Z
dc.date.issued2020
dc.identifier.issn1999-4923
dc.identifier.otherMAT2016-81955-REDTes_ES
dc.identifier.otherDTS19/00033
dc.identifier.urihttp://hdl.handle.net/10902/18679
dc.description.abstractMesoporous silica particles (MSP) are major candidates for drug delivery systems due to their versatile, safe, and controllable nature. Understanding their intracellular route and biodegradation process is a challenge, especially when considering their use in neuronal repair. Here, we characterize the spatiotemporal intracellular destination and degradation pathways of MSP upon endocytosis by HeLa cells and NSC-34 motor neurons using confocal and electron microscopy imaging together with inductively-coupled plasma optical emission spectroscopy analysis. We demonstrate how MSP are captured by receptor-mediated endocytosis and are temporarily stored in endo-lysosomes before being finally exocytosed. We also illustrate how particles are often re-endocytosed after undergoing surface erosion extracellularly. On the other hand, silica particles engineered to target the cytosol with a carbon nanotube coating, are safely dissolved intracellularly in a time scale of hours. These studies provide fundamental clues for programming the sub-cellular fate of MSP and reveal critical aspects to improve delivery strategies and to favor MSP safe elimination. We also demonstrate how the cytosol is significantly more corrosive than lysosomes for MSP and show how their biodegradation is fully biocompatible, thus, validating their use as nanocarriers for nervous system cells, including motor neurons.es_ES
dc.description.sponsorshipThis research was funded by ISCIII Projects ref. PI16/00496, PI19/00349, DTS19/00033, co-funded by ERDF/ESF, "Investing in Your Future"; and MICINN Projects ref. CTM2017-84050-R, NanoBioApp Network (MINECO-17-MAT2016-81955-REDT), COST action Nano2Clinic CA17140, Xunta de Galicia (Centro Singular de Investigación de Galicia-Accreditation 2016-2019 and EM2014/035), European Union FEDER Funds (European Regional Development Fund-ERDF) and IDIVAL for INNVAL 17/11, INNVAL18/28, INNVAL19/18 and the technical support.es_ES
dc.format.extent15 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePharmaceutics, 2020,12(6), 487es_ES
dc.subject.otherSilica Nanocarrieres_ES
dc.subject.otherCytoplasmic Escapees_ES
dc.subject.otherBiodegradationes_ES
dc.subject.otherEngineering Nanoparticleses_ES
dc.subject.otherHeLaes_ES
dc.subject.otherMotor Neuronses_ES
dc.titleEngineering sub-cellular targeting strategies to enhance safe cytosolic silica particle dissolution in cellses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://www.doi.org/10.3390/pharmaceutics12060487es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3390/pharmaceutics12060487
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) licenseExcepto si se señala otra cosa, la licencia del ítem se describe como © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license