Mostrar el registro sencillo

dc.contributor.authorDíez Sierra, Javier 
dc.contributor.authorJesús Peñil, Manuel del 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-06-09T18:14:59Z
dc.date.available2020-06-09T18:14:59Z
dc.date.issued2019-01
dc.identifier.issn2073-4441
dc.identifier.otherBIA2016-78397-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/18659
dc.description.abstractSubdaily rainfall data, though essential for applications in many fields, is not as readily available as daily rainfall data. In this work, regression approaches that use atmospheric data and daily rainfall statistics as predictors are evaluated to downscale daily-to-subdaily rainfall statistics on more than 700 hourly rain gauges in Spain. We propose a new approach based on machine learning techniques that improves the downscaling skill of previous methodologies. Results are grouped by climate types (following the Köppen?Geiger classification) to investigate possible missing explanatory variables in the analysis. The methodology is then used to improve the ability of Poisson cluster models to simulate hourly rainfall series that mimic the statistical behavior of the observed ones. This approach can be applied for the study of extreme events and for daily-to-subdaily precipitation disaggregation in any location of Spain where daily rainfall data are available.es_ES
dc.description.sponsorshipThis research was funded by “Agencia Estatal de Investigación (AEI)” from the Spanish Ministry of Economy, Industry and Competitiveness, and the European Regional Development Fund (ERDF) (Grant Number BIA2016-78397-P (AEI/FEDER, UE); and by Project INDECIS, which is part of ERA4CS, an ERA-NET initiated by JPIClimate and funded by FORMAS(SE), DLR (DE), BMWFW(AT), IFD(DK), MINECO (ES), ANR (FR) with co-funding by the European Union (Grant Number 690462)es_ES
dc.format.extent19 p.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceWater 2019, 11(1), 125; 11 Jan 2019es_ES
dc.titleSubdaily Rainfall Estimation through Daily Rainfall Downscaling Using Random Forests in Spaines_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/690462/EU/European Research Area for Climate Services/ERA4CS/es_ES
dc.identifier.DOI10.3390/w11010125
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International