• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Instituto de Hidráulica Ambiental de Cantabria 'IH Cantabria'
    • D56 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Instituto de Hidráulica Ambiental de Cantabria 'IH Cantabria'
    • D56 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests

    Ver/Abrir
    FlowPrediction Ungau ... (2.656Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/18654
    DOI: 10.1029/2018WR023254
    ISSN: 0043-1397
    ISSN: 1944-7973
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Prieto Sierra, Cristina; Le Vine, Nataliya; Kavetski, Dmitri; García Alonso, Eduardo; Medina Santamaría, RaúlAutoridad Unican
    Fecha
    2019-05
    Derechos
    © American Geophysical Union
    Publicado en
    Water Resources Research Volume55, Issue5 May 2019 Pages 4364-4392
    Editorial
    American Geophysical Union (AGU)
    Resumen/Abstract
    Flow prediction in ungauged catchments is a major unresolved challenge in scientific and engineering hydrology. This study attacks the prediction in ungauged catchment problem by exploiting advances in flow index selection and regionalization in Bayesian inference and by developing new statistical tests of model performance in ungauged catchments. First, an extensive set of available flow indices is reduced using principal component (PC) analysis to a compact orthogonal set of ?flow index PCs.? These flow index PCs are regionalized under minimal assumptions using random forests regression augmented with a residual error model and used to condition hydrological model parameters using a Bayesian scheme. Second, ?adequacy? tests are proposed to evaluate a priori the hydrological and regionalization model performance in the space of flow index PCs. The proposed regionalization approach is applied to 92 northern Spain catchments, with 16 catchments treated as ungauged. It is shown that (1) a small number of PCs capture approximately 87% of variability in the flow indices and (2) adequacy tests with respect to regionalized information are indicative of (but do not guarantee) the ability of a hydrological model to predict flow time series and are hence proposed as a prerequisite for flow prediction in ungauged catchments. The adequacy tests identify the regionalization of flow index PCs as adequate in 12 of 16 catchments but the hydrological model as adequate in only 1 of 16 catchments. Hence, a focus on improving hydrological model structure and input data (the effects of which are not disaggregated in this work) is recommended.
    Colecciones a las que pertenece
    • D56 Artículos [333]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España