• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Administración de Empresas
    • D25 Proyectos de investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Administración de Empresas
    • D25 Proyectos de investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Determination of feeding strategies in aquaculture farms using a multiple-criteria approach and genetic algorithms

    Ver/Abrir
    DeterminationOffeedi ... (1.279Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/18622
    DOI: 10.1007/s10479-019-03227-w
    ISSN: 0254-5330
    ISSN: 1572-9338
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Luna García, Manuel; Llorente García, IgnacioAutoridad Unican; Cobo Ortega, ÁngelAutoridad Unican
    Fecha
    2019
    Derechos
    © Springer The final authenticated version is available online at: https://doi.org/10.1007/s10479-019-03227-w
    Publicado en
    Annals of Operations Research, 2022, 314, 551-576
    Editorial
    Springer
    Enlace a la publicación
    https://doi.org/10.1007/s10479-019-03227-w
    Palabras clave
    Aquaculture management
    Operational research
    Genetic algorithms
    Multiple-criteria
    Decision-making
    Feeding strategies
    Resumen/Abstract
    Since the 1990s, fishing production has stagnated and aquaculture has experienced an exponential growth thanks to the production on an industrial scale. One of the major challenges facing aquaculture companies is the management of breeding activity affected by biological, technical, environmental and economic factors. In recent years, decision-making has also become increasingly complex due to the need for managers to consider aspects other than economic ones, such as product quality or environmental sustainability. In this context, there is an increasing need for expert systems applied to decision-making processes that maximize economic efficiency of the operational process. One of the production planning decisions more affected by these changes is the feeding strategy. The selection of the feed determines the growth of the fish, but also generates the greatest impact of the activity on the environment and determines the quality of the product. In addition, feed is the main production cost in finfish aquaculture. In order to address all these problems, the present work integrates a multiple-criteria methodology with a genetic algorithm that allows determining the best sequence of feeds to be used throughout the fattening period, depending on multiple optimization objectives. Results show its utility to generate and evaluate different alternatives and fulfill the initial hypothesis, demonstrating that the combination of several feeds at precise times may improve the results obtained by one feed strategies.
    Colecciones a las que pertenece
    • D25 Artículos [509]
    • D25 Proyectos de investigación [29]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España