• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fast and efficient energy-oriented cell assignment in heterogeneous networks

    Ver/Abrir
    FastandEfficientEner ... (502.7Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/18620
    DOI: 10.1007/s11276-019-02047-x
    ISSN: 1022-0038
    ISSN: 1572-8196
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Rubio-Loyola, Javier; Aguilar-Fuster, Christian; Díez Fernández, Luis FranciscoAutoridad Unican; Agüero Calvo, RamónAutoridad Unican; Luis-Gorricho, Juan; Serrat Fernández, Joan
    Fecha
    2020-07
    Derechos
    © Springer. This is a post-peer-review, pre-copyedit version of an article published in Wireless Networks. The final authenticated version is available online at: https://doi.org/10.1007/s11276-019-02047-x
    Publicado en
    Wireless Networks, 2020, 26(5), 3119-3137
    Editorial
    Springer Netherlands
    Enlace a la publicación
    https://doi.org/10.1007/s11276-019-02047-x
    Palabras clave
    Cell assignment
    Resource allocation
    Metaheuristic
    Energy efficiency
    Cellular networks
    Heterogeneous networks
    Dense networks
    Resumen/Abstract
    The cell assignment problem is combinatorial, with increased complexity when it is tackled considering resource allocation. This paper models joint cell assignment and resource allocation for cellular heterogeneous networks, and formalizes cell assignment as an optimization problem. Exact algorithms can find optimal solutions to the cell assignment problem, but their execution time increases drastically with realistic network deployments. In turn, heuristics are able to find solutions in reasonable execution times, but they get usually stuck in local optima, thus failing to find optimal solutions. Metaheuristic approaches have been successful in finding solutions closer to the optimum one to combinatorial problems for large instances. In this paper we propose a fast and efficient heuristic that yields very competitive cell assignment solutions compared to those obtained with three of the most widely-used metaheuristics, which are known to find solutions close to the optimum due to the nature of their search space exploration. Our heuristic approach adds energy expenditure reduction in its algorithmic design. Through simulation and formal statistical analysis, the proposed scheme has been proved to produce efficient assignments in terms of the number of served users, resource allocation and energy savings, while being an order of magnitude faster than metaheuritsic-based approaches.
    Colecciones a las que pertenece
    • D12 Proyectos de Investigación [521]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España