dc.contributor.author | Sarabia Alegría, José María | |
dc.contributor.author | Prieto Mendoza, Faustino | |
dc.contributor.author | Jordá, Vanesa | |
dc.contributor.author | Stefan A., Sperlich | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2020-05-07T18:06:17Z | |
dc.date.available | 2020-05-07T18:06:17Z | |
dc.date.issued | 2020-06 | |
dc.identifier.issn | 2227-9091 | |
dc.identifier.other | ECO2016-76203-C2-1-P | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/18546 | |
dc.description.abstract | This note revisits the ideas of the so-called semiparametric methods that we consider to be very useful when applying machine learning in insurance. To this aim, we first recall the main essence of semiparametrics like the mixing of global and local estimation and the combining of explicit modeling with purely data adaptive inference. Then, we discuss stepwise approaches with different ways of integrating machine learning. Furthermore, for the modeling of prior knowledge, we introduce classes of distribution families for financial data. The proposed procedures are illustrated with data on stock returns for five companies of the Spanish value-weighted index IBEX35. | es_ES |
dc.description.sponsorship | The authors thank the Institute and Faculty of Actuaries in the U.K. for funding their research through the grant “Minimizing Longevity and Investment Risk while Optimizing Future Pension Plans” and the Spanish Ministerio de Economía y Competitividad, Project ECO2016-76203-C2-1-P, for partial support of this work. | es_ES |
dc.format.extent | 14 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | es_ES |
dc.rights | Attribution-NonCommercial 4.0 International | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Risks, Volume 8, Issue 2, June 2020, Article number 32 | es_ES |
dc.subject.other | Semiparametric modeling | es_ES |
dc.subject.other | Machine learning | es_ES |
dc.subject.other | VaR estimation | es_ES |
dc.subject.other | Analyzing financial data | es_ES |
dc.title | A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | https://doi.org/10.3390/risks8020032 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.3390/risks8020032 | |
dc.type.version | publishedVersion | es_ES |