• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient SER estimation for MIMO detectors via importance sampling schemes

    Ver/Abrir
    EfficientSEREstimati ... (282.9Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/18516
    DOI: 10.1109/IEEECONF44664.2019.9048894
    ISBN: 978-1-7281-4300-2
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Elvira Arregui, Víctor; Santamaría Caballero, Luis IgnacioAutoridad Unican
    Fecha
    2019
    Derechos
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    53rd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, 2019, 712-716
    Editorial
    Institute of Electrical and Electronics Engineers Inc.
    Enlace a la publicación
    https://doi.org/10.1109/IEEECONF44664.2019.9048894
    Palabras clave
    Multiple importance sampling
    Symbol error rate
    Monte Carlo
    Multiple-input multiple-output (MIMO)
    Maximum likelihood (ML)
    Detection
    Resumen/Abstract
    In this paper we propose two importance sampling methods for the efficient symbol error rate (SER) estimation of maximum likelihood (ML) multiple-input multiple-output (MIMO) detectors. Conditioned to a given transmitted symbol, computing the SER requires the evaluation of an integral outside a given polytope in a high-dimensional space, for which a closed-form solution does not exist. Therefore, Monte Carlo (MC) simulation is typically used to estimate the SER, although a naive or raw MC implementation can be very inefficient at high signal-to-noise-ratios or for systems with stringent SER requirements. A reduced variance estimator is provided by the Truncated Hypersphere Importance Sampling (THIS) method, which samples from a proposal density that excludes the largest hypersphere circumscribed within the Voronoi region of the transmitted vector. A much more efficient estimator is provided by the existing ALOE (which stands for "At Least One rare Event") method, which samples conditionally on an error taking place. The paper describes in detail these two IS methods, discussing their advantages and limitations, and comparing their performances.
    Colecciones a las que pertenece
    • D12 Congresos [595]
    • D12 Proyectos de Investigación [519]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España