Mostrar el registro sencillo

dc.contributor.authorCely, Liliana
dc.contributor.authorGalego, Elói M.
dc.contributor.authorGonzález Ortiz, Manuel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-04-22T16:38:40Z
dc.date.available2020-11-30T03:45:17Z
dc.date.issued2018
dc.identifier.issn0022-247X
dc.identifier.issn1096-0813
dc.identifier.otherMTM2016-76958es_ES
dc.identifier.urihttp://hdl.handle.net/10902/18470
dc.description.abstractABSTRACT: We study the convolution operators Tμ acting on the group algebras L1(G) and M(G), where G is a locally compact abelian group and μ is a complex Borel measure on G. We show that a cotauberian convolution operator Tμ acting on L1(G) is Fredholm of index zero, and that Tμ is tauberian if and only if so is the corresponding convolution operator acting on the algebra of measures M(G), and we give some applications of these results.es_ES
dc.description.sponsorshipSupported in part by MINECO (Spain), Grant MTM2016-76958.es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherAcademic Press Inc.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Mathematical Analysis and Applications (2018) Vol.465, Issue 1, pp. 309-317es_ES
dc.subject.otherMultiplieres_ES
dc.subject.otherTauberian operatores_ES
dc.subject.otherConvolution operatores_ES
dc.titleConvolution operators on group algebras which are tauberian or cotauberianes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jmaa.2018.05.007es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jmaa.2018.05.007
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International