Mostrar el registro sencillo

dc.contributor.authorSce, Fabio
dc.contributor.authorCano, Israel
dc.contributor.authorMartín, Carmen
dc.contributor.authorBeobide Pacheco, Garikoitz
dc.contributor.authorCastillo, Óscar
dc.contributor.authorPedro del Valle, Imanol de 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-04-20T15:28:31Z
dc.date.available2020-06-23T02:45:11Z
dc.date.issued2019-06-22
dc.identifier.issn1144-0546
dc.identifier.issn1369-9261
dc.identifier.otherMAT2014-55049-C2-Res_ES
dc.identifier.otherMAT2016-75883-C2-1-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/18452
dc.description.abstractThe catalytic activity of two halometallate complexes based on imidazolium cations, (dimim)[FeCl4] (1) and (dimim)2[Fe2Cl6(μ-O)] (2), was evaluated in the glycolysis of polyethylene terephthalate (PET), either under conventional heating or microwave-assisted conditions. The two procedures led to the formation of bis(2-hydroxyethyl)terephthalate (BHET) as the major product with high yields, also allowing the isolation and structural characterization of a new polymorph. The influence of the halometallate structure on the catalytic activity was investigated, and additional experimental studies proved the involvement of both the imidazolium cation and metal anion in the reaction mechanism. The comparison of both approaches showed the advantages of the microwave methodology in terms of efficiency and time saving. Indeed, the use of ground PET and microwave heating provided quantitative yields of BHET. Under conventional heating conditions, the dinuclear iron complex gave a slightly lower yield than (dimim)[FeCl4] (74% vs. 77% for post-consumer PET) after 24 h of reaction. However, the microwave-assisted process led to comparable results in remarkably shorter reaction times (2 h). Interestingly, complex 2, containing the dipolar [Fe2Cl6(μ-O)]2− moiety, provided higher yields than 1 with the non-dipolar [FeCl4]− anion (77% vs. 69%). This behaviour has been rationalized on the basis of dielectric heating mechanisms (polarization and conduction), and it suggests a new approach towards obtaining more efficient catalysts by tailoring the catalytic species to be active in both heating mechanisms.es_ES
dc.description.sponsorshipFinancial support from the Spanish Ministerio de Ciencia e Innovación (Projects MAT2014-55049-C2-R and MAT2016-75883-C2-1-P), Universidad del País Vasco/EuskalHerrikoUnibertsitatea (GIU17/50 and PPG17/37). Universidad de Cantabria (Proyecto Puente convocatoria 2018 financed by SODERCAN-FEDER).es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rights© Royal Society of Chemistryes_ES
dc.sourceNew J. Chem., 2019,43, 3476-3485es_ES
dc.subject.otherImidazolium-based halometallate complexes_ES
dc.subject.otherIron-containing ionic liquides_ES
dc.subject.otherPoly(ethylene terephthalate)es_ES
dc.subject.otherBis(2-hydroxyethyl)terephthalatees_ES
dc.subject.otherGlycolysises_ES
dc.titleComparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1039/C8NJ06090Hes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1039/c8nj06090h
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo