dc.contributor.author | Salomón García, Sergio | |
dc.contributor.author | Duque Medina, Rafael | |
dc.contributor.author | Bringas Tejero, Santos | |
dc.contributor.author | Montaña Arnaiz, José Luis | |
dc.contributor.author | Lage, Carmen | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2020-03-04T19:13:06Z | |
dc.date.available | 2020-03-04T19:13:06Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 2504-3900 | |
dc.identifier.uri | http://hdl.handle.net/10902/18337 | |
dc.description.abstract | Alzheimer’s disease (AD) constitutes a neurodegenerative pathology that presents mobility disorders as one of its earliest symptoms. Current smartphones integrate accelerometers that can be used to collect mobility data of Alzheimer’s patients. This paper describes a method that processes these accelerometer data and a convolutional neural network (CNN) that classifies the stage of the disease according to the mobility patterns of the patient. The method is applied in a case study with 35 Alzheimer’s patients, in which a classification success rate of 91% was obtained | es_ES |
dc.format.extent | 9 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license. | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Proceedings 2019, 31(1), 72 | es_ES |
dc.subject.other | Mobile and ubiquitous health | es_ES |
dc.subject.other | Alzheimer | es_ES |
dc.subject.other | Convolutional neural network | es_ES |
dc.title | A Convolutional Neural Network-Based Method for Human Movement Patterns Classification in Alzheimer?s Disease | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.relation.publisherVersion | https://doi.org/10.3390/proceedings2019031072 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.type.version | acceptedVersion | es_ES |