Mostrar el registro sencillo

dc.contributor.authorPardo Franco, Arturo 
dc.contributor.authorLópez Higuera, José Miguel 
dc.contributor.authorPogue, Brian W.
dc.contributor.authorConde Portilla, Olga María 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-03-04T07:50:51Z
dc.date.available2020-03-04T07:50:51Z
dc.date.issued2019-07-11
dc.identifier.isbn978-1-5106-2839-7
dc.identifier.issn0277-786X
dc.identifier.issn1996-756X
dc.identifier.otherTEC2016-76021-C2-2-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/18323
dc.description.abstractExtracting pathology information embedded within surface optical properties in Spatial Frequency Domain Imaging (SFDI) datasets is still a rather cumbersome nonlinear translation problem, mainly constrained by intrasample and interpatient variability, as well as dataset size. The B-variational autoencoder (B-VAE) is a rather novel dimensionality reduction technique where a tractable set of latent low-dimensional embeddings can be obtained from a given dataset. These embeddings can then be sampled to synthesize new data, providing further insight into pathology variability as well as differentiability in terms of optical properties. Its applications for data classification and breast margin delineation are also discussed.es_ES
dc.description.sponsorshipResearch reported in this manuscript was funded by PhD grant FPU016/05705 (Spanish Ministry of Education, Culture and Sports), projects DTS1700055 (FUSIODERM), INNVAL 16/02 (DICUTEN), INNVAL 18/23 (DAPATOO), and TEC201676021C22R (SENSA), as well as cofunded with FEDER funds.es_ES
dc.format.extent3 p.es_ES
dc.language.isoenges_ES
dc.publisherSPIE Society of Photo-Optical Instrumentation Engineers-es_ES
dc.publisherThe Optical Society (OSA)es_ES
dc.rights© 2019 Society of Photo-Optical Instrumentation Engineers and Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.es_ES
dc.sourceArturo Pardo, José M. López-Higuera, Brian W. Pogue, Olga M. Conde, "Deep variational autoencoders for breast cancer tissue modeling and synthesis in SFDI," in European Conference on Biomedical Optics: Diffuse Optical Spectroscopy and Imaging VII, edited by Hamid Dehghani, Heidrun Wabnitz, Vol. 11074 of Proceedings of SPIE-OSA Biomedical Optics, 110741G, (2019)es_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherModulated imaginges_ES
dc.subject.otherOptical propertieses_ES
dc.subject.otherSpatial frequency domain imaginges_ES
dc.subject.otherBreast canceres_ES
dc.subject.otherVariational autoencoderes_ES
dc.subject.otherTurbid mediaes_ES
dc.titleDeep variational autoencoders for breast cancer tissue modeling and synthesis in SFDIes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1117/12.2527142es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1117/12.2527142
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo