Deep variational autoencoders for breast cancer tissue modeling and synthesis in SFDI
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/18323DOI: 10.1117/12.2527142
ISBN: 978-1-5106-2839-7
ISSN: 0277-786X
ISSN: 1996-756X
Registro completo
Mostrar el registro completo DCAutoría
Pardo Franco, Arturo


Fecha
2019-07-11Derechos
© 2019 Society of Photo-Optical Instrumentation Engineers and Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Publicado en
Arturo Pardo, José M. López-Higuera, Brian W. Pogue, Olga M. Conde, "Deep variational autoencoders for breast cancer tissue modeling and synthesis in SFDI," in European Conference on Biomedical Optics: Diffuse Optical Spectroscopy and Imaging VII, edited by Hamid Dehghani, Heidrun Wabnitz, Vol. 11074 of Proceedings of SPIE-OSA Biomedical Optics, 110741G, (2019)
Editorial
SPIE Society of Photo-Optical Instrumentation Engineers-
The Optical Society (OSA)
Enlace a la publicación
Palabras clave
Deep learning
Modulated imaging
Optical properties
Spatial frequency domain imaging
Breast cancer
Variational autoencoder
Turbid media
Resumen/Abstract
Extracting pathology information embedded within surface optical properties in Spatial Frequency Domain Imaging (SFDI) datasets is still a rather cumbersome nonlinear translation problem, mainly constrained by intrasample and interpatient variability, as well as dataset size. The B-variational autoencoder (B-VAE) is a rather novel dimensionality reduction technique where a tractable set of latent low-dimensional embeddings can be obtained from a given dataset. These embeddings can then be sampled to synthesize new data, providing further insight into pathology variability as well as differentiability in terms of optical properties. Its applications for data classification and breast margin delineation are also discussed.
Colecciones a las que pertenece
- D50 Congresos [470]
- D50 Proyectos de Investigación [421]
- IDIVAL Proyectos de investigación [199]