Mostrar el registro sencillo

dc.contributor.authorCuesta Albertos, Juan Antonio 
dc.contributor.authorGarcía-Portugués, Eduardo
dc.contributor.authorFebrero-Bande, Manuel
dc.contributor.authorGonzález-Manteiga, Wenceslao
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-02-25T19:34:19Z
dc.date.available2020-02-25T19:34:19Z
dc.date.issued2019
dc.identifier.issn0090-5364
dc.identifier.issn2168-8966
dc.identifier.otherMTM2014-56235-C2-2-Pes_ES
dc.identifier.otherMTM2017-86061-C2-2-Pes_ES
dc.identifier.otherMTM2013-41383-Pes_ES
dc.identifier.otherMTM2016-76969-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/18276
dc.description.abstractWe consider marked empirical processes indexed by a randomly projected functional covariate to construct goodness-of-fit tests for the functional linear model with scalar response. The test statistics are built from continuous functionals over the projected process, resulting in computationally efficient tests that exhibit root-n convergence rates and circumvent the curse of dimensionality. The weak convergence of the empirical process is obtained conditionally on a random direction, whilst the almost surely equivalence between the testing for significance expressed on the original and on the projected functional covariate is proved. The computation of the test in practice involves calibration by wild bootstrap resampling and the combination of several p-values, arising from different projections, by means of the false discovery rate method. The finite sample properties of the tests are illustrated in a simulation study for a variety of linear models, underlying processes, and alternatives. The software provided implements the tests and allows the replication of simulations and data applications.es_ES
dc.description.sponsorshipSupported by projects MTM2014-56235-C2-2-P and MTM2017-86061-C2-2-P from the Spanish Ministry of Economy, Industry and Competitiveness. Supported by projects MTM2013-41383-P and MTM2016-76969-P from the Spanish Ministry of Economy, Industry and Competitiveness, and the European Regional Development Fund; project 10MDS207015PR from Dirección Xeral de I + D, Xunta de Galicia.es_ES
dc.format.extent29 p.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Mathematical Statisticses_ES
dc.rights© Institute of Mathematical Statisticses_ES
dc.sourceAnn. Statist.Volume 47, Number 1 (2019), 439-467es_ES
dc.titleGoodness-of-fit tests for the functional linear model based on randomly projected empirical processeses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1214/18-AOS1693es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1214/18-AOS1693
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo