Coupling-induced hysteresis in free-running oscillators
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2019Derechos
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publicado en
IEEE/MTT-S International Microwave Symposium (IMS 2019), Boston, MA, USA, 2019, 948-951
Editorial
Institute of Electrical and Electronics Engineers Inc.
Enlace a la publicación
Palabras clave
Oscillator
Hysteresis
Stability
Resumen/Abstract
An investigation of coupling-induced hysteresis in free-running oscillators is presented, for possible application in sensors and RF identification (RFID). In its basic form, the phenomenon arises when an inductive element in an oscillator circuit gets magnetically coupled to another inductor in an external (passive) resonator. For a low mutual inductance or coupling, a small dip is observed in the oscillator amplitude curve versus a turning parameter. As demonstrated in this work, when the mutual inductance increases, the dip evolves into a hysteresis cycle. When coupled to several external resonators, the solution curve will also exhibit several hysteresis cycles about the corresponding resonance frequencies. Due to the complexity of the solution curves, a dedicated analysis methodology has been developed and tested on a prototype at 600 MHz, obtaining very good agreement between simulation and measurements.