Global existence for the confined muskat problem
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/18174DOI: 10.1137/130912529
ISSN: 0036-1410
ISSN: 1095-7154
Registro completo
Mostrar el registro completo DCAutoría
Granero Belinchón, Rafael
Fecha
2014Derechos
© Society for Industrial and Applied Mathematics (SIAM)
Publicado en
SIAM Journal on Mathematical Analysis, 2014, 46(2), 1651-1680
Editorial
Society for Industrial and Applied Mathematics
Enlace a la publicación
Palabras clave
Darcy’s law
Inhomogeneus Muskat problem
Well-posedness
Resumen/Abstract
In this paper we show global existence of the Lipschitz continuous solution for the stable Muskat problem with finite depth (confined) and initial data satisfying some smallness conditions relating the amplitude, the slope, and the depth. The cornerstone of the argument is that, for these small initial data, both the amplitude and the slope remain uniformly bounded for all positive times. We notice that, for some of these solutions, the slope can grow but it remains bounded. This is very different from the infinite deep case, where the slope of the solutions satisfy a maximum principle. Our work generalizes a previous result where the depth is infinite.
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]