Mostrar el registro sencillo

dc.contributor.authorGómez Gandarillas, Delfina 
dc.contributor.authorLobo Hidalgo, Miguel 
dc.contributor.authorPérez Martínez, María Eugenia 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-02-12T11:55:17Z
dc.date.available2020-02-12T11:55:17Z
dc.date.issued2019-01-15
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.otherMTM2013-44883-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/18165
dc.description.abstractWe consider a time-dependent model for the diffusion of a substance through an incompressible fluid in a perforated domain ??, urn:x-wiley:mma:media:mma5323:mma5323-math-0001 with n?=?3,4. The fluid flows in a domain containing a periodical set of ?obstacles? (?\??) placed along an inner (n???1)?dimensional manifold urn:x-wiley:mma:media:mma5323:mma5323-math-0002. The size of the obstacles is much smaller than the size of the characteristic period ?. An advection term appears in the partial differential equation linking the fluid velocity with the concentration, while we assume a nonlinear adsorption law on the boundary of the obstacles. This law involves a monotone nonlinear function ? of the concentration and a large adsorption parameter. The ?critical adsorption parameter? depends on the size of the obstacles , and, for different sizes, we derive the time?dependent homogenized models. These models contain a ?strange term? in the transmission conditions on ?, which is a nonlinear function and inherits the properties of ?. The case in which the fluid velocity and the concentration do not interact is also considered for n???3.es_ES
dc.description.sponsorshipThe authors would like to thank the anonymous referees for their careful reading of the manupscript and useful comments. The work has been partially supported by MINECO, MTM2013-44883-P.es_ES
dc.format.extent10 p.es_ES
dc.language.isoenges_ES
dc.publisherJohn Wiley & Sonses_ES
dc.rights© John Wiley & Sons "This is the peer reviewed version of the following article: Gómez, D, Lobo, M, Pérez, ME. Asymptotics for models of non-stationary diffusion in domains with a surface distribution of obstacles. Math Meth Appl Sci. 2019; 42: 403? 413., which has been published in final form at [https://doi.org/10.1002/mma.5323]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."es_ES
dc.sourceMathematical Methods in the Applied Sciences - Volume42, Issue1 15 January 2019. Pages 403-413es_ES
dc.subject.otherAsymptotic expansionses_ES
dc.subject.otherBoundary homogenizationes_ES
dc.subject.otherCritical parameterses_ES
dc.subject.otherEvolution problemses_ES
dc.subject.otherNonlinear problemses_ES
dc.titleAsymptotics for models of non-stationary diffusion in domains with a surface distribution of obstacleses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://onlinelibrary.wiley.com/doi/full/10.1002/mma.5323es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1002/mma.5323
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo