Mostrar el registro sencillo

dc.contributor.authorGómez Pérez, Ana Isabel 
dc.contributor.authorCruz Rodríguez, Marcos 
dc.contributor.authorCruz Orive, Luis Manuel 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2020-02-11T19:09:14Z
dc.date.available2020-02-11T19:09:14Z
dc.date.issued2019
dc.identifier.issn1580-3139
dc.identifier.issn1854-5165
dc.identifier.urihttp://hdl.handle.net/10902/18162
dc.description.abstractDesign unbiased estimation of population size by stereological methods is an efficient alternative to automatic computer vision methods, which are generally biased. Moreover, stereological methods offer the possibility of predicting the error variance from a single sample. Here we explore the statistical performance of two alternative variance estimators on a dataset of 26 labelled crowd pictures. The empirical mean square errors of the variance predictors are compared by means of Monte Carlo resampling.es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherInternational Society for Stereologyes_ES
dc.rightsAttribution-NonCommercial 4.0 Internationales_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceImageAnalStereol2019;38:131-139es_ES
dc.subject.otherCavalieri error variance predictores_ES
dc.subject.otherGeometric samplinges_ES
dc.subject.otherMonte Carlo resamplinges_ES
dc.subject.otherParticle countinges_ES
dc.subject.otherPopulation sizees_ES
dc.subject.otherSplit error variance predictores_ES
dc.subject.otherSystematic quadratses_ES
dc.titleVariance prediction for population size estimationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://www.ias-iss.org/ojs/IAS/article/view/1991es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.5566/ias.199
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

Attribution-NonCommercial 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial 4.0 International