Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2019-06-28Derechos
©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Publicado en
Journal de Mathématiques Pures et Appliquées
Volume 134, February 2020, Pages 299-327
Editorial
Elsevier
Enlace a la publicación
Resumen/Abstract
We consider a spectral problem for the Laplacian operator in a planar T-like shaped thin structure , where E; denotes the transversal thickness of both branches. We assume the homogeneous Dirichlet boundary condition on the ends of the branches and the homogeneous Neumann boundary condition on the remaining part of the boundary of . We study the asymptotic behavior, as ; tends to zero, of the high frequencies of such a problem. Unlike the asymptotic behavior of the low frequencies where the limit problem involves only longitudinal vibrations along each branch of the T-like shaped thin structure (i.e. 1D limit spectral problems), we obtain a two dimensional limit spectral problem which allows us to capture other kinds of vibrations. We also give a characterization of the asymptotic form of the eigenfunctions originating these vibrations.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]