• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment

    Ver/Abrir
    ValidationOfSpatial.pdf (5.637Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/18083
    DOI: 10.1002/joc.6024
    ISSN: 0899-8418
    ISSN: 1097-0088
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Widmann. Martin; Bedia Jiménez, JoaquínAutoridad Unican; Gutiérrez Llorente, José Manuel; Bosshard, Thomas; Hertig, Elke; Maraun, Douglas; Casado, María J.; Ramos, Petra; Cardoso, Rita Margarida; Soares, Pedro M.M.; Ribalaygua, Jaime; Pagé, Christian; Fischer, Andreas M.; Herrera García, SixtoAutoridad Unican; Huth, Radan
    Fecha
    2019-01-31
    Derechos
    ©John Wiley & Sons. ""This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/joc.6024. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
    Publicado en
    International Journal of Climatology Volume 39, Issue 9 July 2019 Pages 3819-3845
    Editorial
    John Wiley and Sons Ltd
    Enlace a la publicación
    https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/joc.6024
    Resumen/Abstract
    The spatial dependence of meteorological variables is crucial for many impacts, for example, droughts, floods, river flows, energy demand, and crop yield. There is thus a need to understand how well it is represented in downscaling (DS) products. Within the COST Action VALUE, we have conducted a comprehensive analysis of spatial variability in the output of over 40 different DS methods in a perfect predictor setup. The DS output is evaluated against daily precipitation and temperature observations for the period 1979?2008 at 86 sites across Europe and 53 sites across Germany. We have analysed the dependency of correlations of daily temperature and precipitation series at station pairs on the distance between the stations. For the European data set, we have also investigated the complexity of the downscaled data by calculating the number of independent spatial degrees of freedom. For daily precipitation at the German network, we have additionally evaluated the dependency of the joint exceedance of the wet day threshold and of the local 90th percentile on the distance between the stations. Finally, we have investigated regional patterns of European monthly precipitation obtained from rotated principal component analysis. We analysed Perfect Prog (PP) methods, which are based on statistical relationships derived from observations, as well as Model Output Statistics (MOS) approaches, which attempt to correct simulated variables. In summary, we found that most PP DS methods, with the exception of multisite analog methods and a method that explicitly models spatial dependence yield unrealistic spatial characteristics. Regional climate model?based MOS methods showed good performance with respect to correlation lengths and the joint occurrence of wet days, but a substantial overestimation of the joint occurrence of heavy precipitation events. These findings apply to the spatial scales that are resolved by our observation network, and similar studies with higher resolutions, which are relevant for small hydrological catchment, are desirable.
    Colecciones a las que pertenece
    • D20 Artículos [468]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España